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O The problem

O | mplicit schemes with  Krylov solvers
O Explicit Super Time -stepping schemes
® The MAS thermodynamic MHD model

O Real-world test case and HPC setup
O Performance and scaling results

O Outlook

RIS e
¥ v S0
@ Predietive Science Inc.>
i
,."!?3‘ R i

\\
oot



® Thermodynamic MHD models have multiple time scales

leading to vastly different explicit time  -step stability
requirements

O In order to make coronal simulations tractable , we need to
exceed such explicit limits

® Focus on parabolic terms

O Implicit methods (need iterative solvers)
® Explicit methods with unconditional/extended stablility
O® Reformulation of the model (e.g. thermal waves)

® Here, we compare a supertime -stepping method to an
Implicit method

CAUT'ON NOTE! When exceeding explicit time  -step limits, one must be

ST very careful about accuracy. Using too large of a time step
scales! can result in large errors!
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Implicit Scheme wittKrylovSolver ExplicitSuper Timestepping Schen+e

BackwardEuler solved with 2"%-order RungeKuttaLegendre scheme (RKL:
Preconditioned Conjugate Gradient (BE+PCGQG) [Meyer et al, 2014]

Comparison Criteria

O Basic validation of accuracy and stability
O Ease/difficulty of formulation and implementation
O Features and limitations

O Overall performance

® Number of iterations needed for each large time -step
® Computational cost per iteration

O Parallel performance

® Parallel communication needed per iteration
® How well does the method scale?
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- Impticit scheme w

O Backward Euler (BE): simplest L -stable method
n+1 n

ou U — -
prie F(u,r) ‘ N \Y K7
O Applying BE to PDE yields a system of equations to solve
(1-AtM)u" ' =" wmmp Az=y

O To avoid the need for nonlinear solvers, we linearize any nonlinear terms
with lagged diffusivity, e.g.

O WT YT bV [T 9T
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® For operators yielding large sparse matrices, Krylov
subspace methods are popular

® For linear symmetric (and nearly -symmetric)
matrices: Conjugate Gradient

O Preconditioned Conjugate Gradient:
Apply an approximate inverse of the matrix to
Apr econdi tprobleamdco itwidle converge more
quickly

® Need to balance cost of preconditioner with its
reduction In iterations
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O We use two preconditioning options:

® PC1: Point -Jacobi/ Diagonal scaling (DIAG) | |
Cheap, but not very effective... |
Communication free

® PC2: Non -overlapping domain decomposition
with zero -fill Incomplete LU factorization
(NDD+ILUO)

Expensive, but much more effective!
Communication free

Drawback: N ocessors — Veria mmmmp PC2 — PCI
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