
GPU-acceleration of an Established
Solar MHD code using OpenACC

Ronald M. Caplan, Jon A. Linker,
Zoran Mikić, Cooper Downs, and Tibor Török

Slides available at:
predsci.com/~caplanr

Outline

Accelerated Computing

OpenACC

The MAS Code

OpenACC Implementation

Results

Outlook

Accelerated Computing
An accelerator is a discrete
piece of hardware designed for
massively parallel computations

Many brands/types of
accelerators, here we focus on
NVIDIA GPUs.

Why use accelerators?

1) Performance (FLOP/s and
Memory Bandwidth)

2)Compact Performance

3) Saves Energy

4) Saves Money

AMD GPU Intel Phi FPGA NVIDIA GPU

4xGPU 8xGPU 16xGPU

Accelerated Computing

Who uses accelerators?

“… consists of 4,608 compute servers, each containing two
22-core IBM Power9 processors and six NVIDIA Tesla V100
GPU accelerators ...”

• Tues. 9:40 AM M. Zingale
• Tues. 3:30 PM M. Zhang
• Wed. 8:25 AM N. Pogorelov - MS-FLUKSS
• Thurs. 1:55 PM P. Woodward - PPMStar

Accelerated Computing

 Why not use accelerators?

Not all algorithms suitable

Hard to program
Originally, only option was language
extension APIs

CUDA (NVIDIA-specific)

OpenCL (more general)

This involves rewriting large
sections of code and maintaining at
least two code bases.

Portability and longevity risk
What if GPUs go away?

__global__ void saxpy(int N, float a,
 float * restrict x,
 float * restrict y){
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < N) y[i] = a*x[i] + y[i];
}
...
const int BLOCK_SIZE=2048;
float *d_x,*d_y;

dim3 dimBlock(BLOCK_SIZE);
dim3 dimGrid((int)ceil((N+0.0)/dimBlock.x));

cudaMalloc((void **) &d_x, sizeof(float)*N);
cudaMalloc((void **) &d_y, sizeof(float)*N);
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

saxpy<<<dimGrid,dimBlock>>>(N, a, d_x, d_y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);
cudaFree(d_x);
cudaFree(d_y);

for (i=0; i<N; i++)
 y[i] = a*x[i] + y[i];

OpenACC

Directive-based API, began as off-shoot
of OpenMP

Uniform source code (no branches!)

Low-risk
(can compile to CPU as before)

Vendor-independent
(PGI, CRAY, GNU, OMNI, SunWay)

Multiple Target Architectures
(GPU, Multicore x86, FPGA, SunWay)

Designed for rapid development,
especially for pre-existing codes

Used by >90% of GPU Industry codes
run on Titan at ORNL

C: #pragma acc
FORTRAN: !$acc

OpenACC

for (i=0; i<N; i++)
 y[i] = a*x[i] + y[i];

#pragma acc enter data copyin(x,y)
#pragma acc parallel present(x,y)
{
#pragma acc loop gang vector(32)
for (i=0; i<N; i++)
 y[i] = a*x[i] + y[i];
}
#pragma acc update_self(y)
#pragma acc exit data delete(x,y)

#pragma acc kernels
for (i=0; i<N; i++)
 y[i] = a*x[i] + y[i];

Example:
Accelerating SAXPY

__global__ void saxpy(int N, float a,
 float * restrict x,
 float * restrict y){
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < N) y[i] = a*x[i] + y[i];
}
...
const int BLOCK_SIZE=2048;
float *d_x,*d_y;
dim3 dimBlock(BLOCK_SIZE);
dim3 dimGrid((int)ceil((N+0.0)/dimBlock.x));
...
cudaMalloc((void **) &d_x, sizeof(float)*N);
cudaMalloc((void **) &d_y, sizeof(float)*N);
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

saxpy<<<dimGrid,dimBlock>>>(N, 2.0, d_x, d_y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);
cudaFree(d_x);
cudaFree(d_y);

Established MHD code with over 15 years of development used
extensively in solar physics research

Written in FORTRAN 90 (~50,000 lines), parallelized with MPI

Available for use at the Community Coordinated Modeling Center (CCMC)

Predicted Corona of the August 21st, 2017 Total Solar Eclipse Simulation of the Feb. 13th, 2009 CME

MAS: `Full’ MHD Model Equations

MAS: MHD Model Equations (“Zero-Beta”)

 In the low corona outside of active regions, the plasma beta is very small

(i.e. dynamics dominated by magnetic field)

This allows a simplified “zero-beta” model to be useful in many cases

(e.g. modeling the initial configuration and onset dynamics of a CME eruption)

Since the core algorithms are the same as the full model, this makes an ideal target

for our initial OpenACC implementation (stepping stone)

MAS: Algorithm Summary

 Finite difference on non-uniform
spherical grid

Parallelized with MPI

Explicit and implicit time-stepping
algorithms

Implicit time-step (backward-Euler)
solved with Preconditioned Conjugate
Gradient

Two communication-free
preconditioners: PC1 and PC2

For ‘hard’ solves, PC2 faster than PC1
for ‘easy’ solves, PC1 faster than PC2

PCG

Block-Jacobi
with ILU0

Point-Jacobi

rank i

 Resistivity

 Semi-Implicit Pred

 Semi-Implicit Corr

 Viscosity

Zero-Beta Unstable Flux Rope Eruption

Physical code time duration: 198 seconds

Number of time-steps: 695

Run information

Production Test Run

PCG Solver Iterations per Time Step (mean)

Detailed run information

Spherical Domain with

OpenACC Implementation: Preliminaries

Profile code

PCG over 90% of run-time

Viscosity is hardest solve

Analyze algorithms for GPU-compatibility

Most PCG steps and explicit time-stepping
“vector-friendly”

Preconditioners

Test performance through “Proof-of-concepts”

DIFFUSE: Explicit finite-difference

POT3D: PCG+PC1/PC2

Based on results of POT3D, we only accelerate
PC1 in MAS

Run using 16 nodes of 24-core Haswell CPUs (PC2)

PC1: directives only (portable)

PC2: cuSparse (not portable)

OpenACC Implementation: Examples

 allocate and initialize “y” …
!$acc enter data copyin (y)
 use “y” in OpenACC compute regions …
!$acc update self (y)
 CPU version of “y” updated for I/O, etc. …
!$acc exit data delete(y)

CPU↔GPU Data transfers
!$acc parallel default(present)
!$acc loop
 do i=1,n
 y(i) = a*x(i) + y(i)
 enddo
!$acc end parallel

Basic Loop

!$acc kernels loop present(y)
!$acc& reduction(+:sum)
 do j=1,m
 sum = sum + y(j)
 enddo

Reductions
!$acc kernels default(present)
 y(:) = a*x(:) + y(:)
!$acc end kernels

FORTRAN Array-syntax

OpenACC Implementation: Multi-GPU

 Multiple GPUs with MPI

call MPI_Comm_rank (MPI_COMM_WORLD, iprocw, ierr)
ngpus_per_node = 4
igpu = MODULO(iprocw, ngpus_per_node)
!$acc set device_num(igpu)

MPI-2
(assumes linear affinity)

MPI-3
(code shown assumes

#GPUs/node = #ranks/node)

call MPI_Comm_split_type (MPI_COMM_WORLD,MPI_COMM_TYPE_SHARED,
& 0,MPI_INFO_NULL,comm_shared,ierr)
call MPI_Comm_size (comm_shared, nprocsh, ierr)
call MPI_Comm_rank (comm_shared, iprocsh, ierr)
igpu = MODULO(iprocsh, nprocsh)
!$acc set device_num(igpu)

Use GPU data directly with MPI calls (“CUDA-aware MPI”)

!$acc host_data use_device(y) if_present
 call MPI_Allreduce (MPI_IN_PLACE,y,n,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,ierr)
!$acc end host_data

OpenACC Implementation: Effort Summary

Factors to consider:

Details

Optional CPU code simplifications

Some CPU changes are temporary
compiler bug work-arounds, or waiting
for future OpenACC features

Full code not accelerated
(zero-beta only!)

<2%

OpenACC comment
lines added

<5%
Total modified
lines of code

Total lines in original code 52,600

Total lines in accelerated code 55,460

Total !$acc/!$acc& lines added 776 (1.5%)

Total modified lines 2451 (4.7%)

Single portable source for
GPU and CPU!

OpenACC Implementation: Difficulties

Compiler Issues

Documentation lag

Implementation lag

Bugs

System issues

Compiler licenses/updates

Library versions and setup

Hardware setups

Difficulties…

Timing Procedures

“Time-to-solution”
Includes I/O, comm, setup,
etc. (Queue times
excluded, but important!)

We use best available
compiler, compiler version,
instruction sets, library
versions, and algorithm for
each hardware

vs.

GPU CPU

vs.
Why is this fair?

We’re not benchmarking hardware

Want to test the maximum “effective”
performance on each system for solving
our problem, using our code

Hardware and Environments

NASA NAS Pleiades & Electra Local Workstation Local Desktop

Compiler Intel 2018 .0.128 GNU 5.4.0

MPI Library SGI MPT 2.15r20 OpenMPI 1.10.2

Family Sandy Bridge Ivy Bridge Haswell Broadwell Skylake Haswell Broadwell

Instruction Set AVX AVX2 AVX512 AVX2

Model E5-2670 E5-2680v2 E5-2680v3 E5-2680v4 Gold 6148 E5-2680v3 E5-1650v4

Clock Rate 2.6 GHz 2.8 GHz 2.5 GHz 2.4 GHz 2.4 GHz 2.5 GHz 3.6 GHz

#Sockets x #Cores 2x8 2x10 2x12 2x14 2x20 2x12 1x6

Total Mem Bandwidth 51.2 GB/s 59.7 GB/s 68 GB/s 76.8 GB/s 128 GB/s 68 GB/s 76.8 GB/s

NVIDIA PSG SDSC Comet Local Desktop

Compiler PGI 18.3 PGI 18.4

MPI Library OpenMPI 1.10.7 OpenMPI 2.1.2

CUDA Library CUDA 9.1

Driver Version 396.26 367.48 396.26

GPUs x Model 4xV100 4xP100 1xTitanXP

Clock Rate 1.38 GHz 1.33 GHz 1.58 GHz

CUDA DP Cores/GPU 2560 1792 120

Mem Bandwidth/GPU 900 GB/s 732 GB/s 547.6 GB/s

Compiler Flags:
Intel (CPU): -O3 -heap-arrays
 -fp-model precise
 -xCORE_AVX#

GNU (CPU): -O3 –mtune=native

PGI (GPU): -O3
 -ta=tesla:cuda9.1,cc##

Timing Results

4x PCIe GPUs
per node

RDMA

Timing Results “In-house” Single Server

Timing Results “In-house” Single Desktop

~$7000 ~$3000 +$1200

~$9000
Wall Clock:

(est) ~1 hour

<1.5x Cost
>10x Speed

Alternative Algorithms: Super Time-Stepping

STS
Want vectorizable PC as good as PC2 in reducing
iterations

Geometric/algebraic multigrid attractive choice but
requires massive code changes

At ASTRONUM 2016 we tested RKL2 Super Time-
Stepping (STS) (Meyers et al 2014) in MAS as an
alternative to PCG for viscosity

Performance of the STS method was great, but
had accuracy issues

Since the STS algorithm is highly vectorizable, its
worth testing an OpenACC implementation for the
current problem (where viscosity is most time-
consuming)

Alternative Algorithms: Super Time-Stepping
V
is

c
o
s
it
y
:

P
C

G
+

P
C

2

V
is

c
o
s
it
y
:

S
T
S

Alternative Algorithms: Super Time-Stepping

CPU: STS ≈ PC2 GPU: STS < PC1

CPU
STS exhibits
better scaling,
but similar run
times to PC2

GPU
STS ~ twice as
fast as PC1,
but similar
scaling

Performance Summary of Equivalent Wall Time

STSvisc

(1.1 hours)

CPU: PC2
GPU: PC1

(2.3 hours)

PC1
(2.3 hours)

1x

V100
= = =

1.6x 5.3x 2.9x

P100
40 cores 24 cores

Can fit 4 of these in one desktop (~20 min)!

= = =
1x 1.6x 2.5x 1.4x

V100 P100
40 cores 24 cores

= = =
1x 1.7x 5.7x 2.9x

V100 P100
40 cores 24 cores

Summary and Outlook

For this run (representative of
many similar cases), we can
move from HPC cluster to
“in-house”

Future improvements

Vectorizable Preconditioners

PC2 with single-precision

Make STS method accuracy-
robust

Next steps

Heliospheric runs
(PC1 faster than PC2 on CPU!)

Thermodynamic (coronal) runs
(on GPU-cluster like Summit)

Thermodynamic CME Simulation Heliospheric CME Simulation

This work was supported by
- NSF’s Frontiers in Earth System Dynamics
- NASA’s Living with a Star program
- Air Force Office of Scientific Research

Contact: caplanr@predsci.com

Slides available at:
predsci.com/~caplanr

Computer allocations provided by
 - NASA NAS (Pleiades/Electra)
 - NVIDIA Cooperation (PSG)
 - XSEDE/SDSC (Comet)

Questions?

