GPldcceleratian an Established

W

g/

Solar MHD amda gﬁpi %A C_C

e =
| Ronald M. Caplan, Jon A. Linker, |
~ Zoran Mikil, Cooper Downs,

29, 2018, PANAMA CITY BEACH, FL

Slides available at: e

predsci.com/~caplanr

an (

__Outline

ki‘,‘

O Accelerated Computing

O OpenACC

® The MAS Code

O OpenACC Implementation
O Results

O Outlook

- \\\
Predigtive Science Inc. >
.fg ‘ %

W ey

An accelerator is a discrete
piece of hardware designed for
massively parallel computations

Many brands/types of
accelerators, here we focus on
NVIDIA GPUs.

Why use accelerators?

1) Performance (FLOP/s and
Memory Bandwidth)

2) Compact Performance

4XGPU 8xGPU 16XGPU

3) Saves Energy
4) Saves Money /A\

Tesla:P100

INTEL Xeon CPUs —d—

NVIDIA Tesla GPUs ——

2012
End of Year

—

Accelerated Computing. ...

Who uses accelerators? Top stories

GPU Developers

10Xin5Yrs
Move Over, China: This computer can IBM and the
U.S. Is Again Home do more Department of
to World's calculations per Energy show off
| Speediest Supercom... second than the world... world’s fastest superc...

a X O 2 of 460%dorapute servers, each containing twc
Total GPU FLOPS of Top 50 22-core IBM Power9 processors asidNVIDIA Tesla V100
Systems 15X in 5 Yrs GPU acceleratoi® @ d ¢

ASTRONUM 2013

A Tues. 9:40 AMM. Zingale

A Tues. 3:30 PMM. Zhang

E A Wed. 8:25 AMN.Pogorelov- MSFLUKSS
2013 2018 A Thurs. 1:55 PMP. Woodward- PPMStar

~_Accelerated Computing. ...

Why not use accelerators?
o
o

Not all algorithms suitable

Hard to program
Originally, only option was language
extension APIs

O CUDA (NVIDIA -specific)
® OpenCL (more general)

® This involves rewriting large
sections of code and maintaining at

least two code bases.

for (i=0; i<\ i++)

ylr] =a*x[i] + y[i]

N\

O Portability and longevity risk
What if GPUs go away?

CUDA

/_global _ \

void saxpy(int N, float a,
float * restrict X,
float * restrict YK

nt 1 = blockldx .x*blockDim . x + threadldx . Xx;
it (i <N y[i] = a*x[i] + y[i]

}

const int BLOCK SI1Z=2048;

float *d x,* d. y;

dim3 dimBlock (BLOCK_SIZ);
dim3 dimGrid ((int) ceil ((N+0.0)/ dimBlock . x));

cudaMalloc ((void
cudaMalloc ((void
cudaMemcp(d_x, X, N,
cudaMemcp(d_ vy, vy, N,

**) & X, sizeof (float)* N);
&d_y, sizeof (float)* N);
cudaMemcpyHostToDevice);

cudaMemcpyHostToDevice);

**)

saxpy <<<dimGrid , dimBlock >>>(N, a, d_x, d_y);

cudaMemcp(y, d_y, N, cudaMemcpyDeviceToHos));

cudaFree (d_x);
deaFree (d_y); /

-QQGHAQC R — e

Ope I —_ ‘ C. #pragma acc

More Science, Less Programming FO RT RAN I$ a_CC

O Directive -based API, began as off -shoot
of OpenMP

® Uniform source code (no branches!)

O Low-risk
(can compile to CPU as before)

® Vendor -independent
(PGI , CRAY, GNU, OMNI, SunWay)

® Multiple Target Architectures
(GPU, Multicore x86, FPGA, SunWay)

O Designed for rapid development,
especially for pre -existing codes

O Usedby >90% of GPU Industry codes
run on Titan at ORNL

