
GPU-acceleration of an Established
Solar MHD code using OpenACC

Ronald M. Caplan, Jon A. Linker,
Zoran Mikiĺ, Cooper Downs, and Tibor Tºrºk

Slides available at:
predsci.com/~caplanr

Outline

Accelerated Computing

OpenACC

The MAS Code

OpenACC Implementation

Results

Outlook

Accelerated Computing
An accelerator is a discrete
piece of hardware designed for
massively parallel computations

Many brands/types of
accelerators, here we focus on
NVIDIA GPUs.

Why use accelerators?

1) Performance (FLOP/s and
Memory Bandwidth)

2) Compact Performance

3) Saves Energy

4) Saves Money

AMD GPU Intel Phi FPGA NVIDIA GPU

4xGPU 8xGPU 16xGPU

Accelerated Computing

Who uses accelerators?

άΧ Ŏƻƴǎƛǎǘǎ of 4,608 compute servers, each containing two
22-core IBM Power9 processors and six NVIDIA Tesla V100
GPU accelerators ΦΦΦέ

Å Tues. 9:40 AM M. Zingale
Å Tues. 3:30 PM M. Zhang
Å Wed. 8:25 AM N. Pogorelov - MS-FLUKSS
Å Thurs. 1:55 PM P. Woodward - PPMStar

Accelerated Computing

 Why not use accelerators?

Not all algorithms suitable

Hard to program
Originally, only option was language
extension APIs

CUDA (NVIDIA -specific)

OpenCL (more general)

This involves rewriting large
sections of code and maintaining at
least two code bases.

Portability and longevity risk
What if GPUs go away?

__global __ void saxpy (int N, float a,
 float * restrict x,
 float * restrict y){
 int i = blockIdx . x* blockDim . x + threadIdx . x;
 if (i < N) y[i] = a* x[i] + y[i];
}
...
const int BLOCK_SIZE=2048;
float * d_x,* d_y;

dim3 dimBlock (BLOCK_SIZE);
dim3 dimGrid ((int) ceil ((N+0.0)/ dimBlock . x));

cudaMalloc ((void **) &d_x, sizeof (float)* N);
cudaMalloc ((void **) &d_y, sizeof (float)* N);
cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

saxpy<<<dimGrid , dimBlock >>>(N, a, d_x, d_y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);
cudaFree (d_x);
cudaFree (d_y);

for (i =0; i <N; i ++)
 y[i] = a* x[i] + y[i];

OpenACC

Directive -based API, began as off -shoot
of OpenMP

Uniform source code (no branches!)

Low -risk
(can compile to CPU as before)

Vendor - independent
(PGI , CRAY, GNU, OMNI, SunWay)

Multiple Target Architectures
(GPU , Multicore x86, FPGA, SunWay)

Designed for rapid development,
especially for pre -existing codes

Used by > 90% of GPU Industry codes
run on Titan at ORNL

C: #pragma acc
FORTRAN: !$ acc

