
Acceleration of a production Solar MHD code
with Fortran standard parallelism:
From OpenACC to do concurrent

Ronald M. Caplan, Miko M. Stulajter, and Jon A. Linker
Predictive Science Inc.
caplanr@predsci.com

Supported by:

Accelerated Computing

Directives and Standard Parallelism

Previous Implementations

The MAS Code

From OpenACC to Do Concurrent

Performance

Summary and Future Outlook

Outline

Why Accelerated Computing?

Overall performance
 FLOP/s
 Memory Bandwidth
 Specialized hardware
(e.g. ML/DL tensor cores)

Compact performance
 In-house workstations
 Reduce HPC real estate

 Efficient performance
 Lower energy use
 Save money

Memory BandwidthFP64 FLOP/s

Directives

Special comments that direct/allow the compiler to
generate code that the base language does not
support (e.g. parallelism, GPU-offload, data
movement, etc.)

Can produce single source code base for multiple
targets (GPU, Multi-core CPU, FPGA, etc.)

Low-risk - can ignore directives and compile as
before

Vendor-independent (NVIDIA, AMD GCN, Intel,
GCC, Cray, Flang, etc.)

Great for rapid development and accelerating
legacy codes

Two major directive APIs for accelerated
computing: OpenACC and OpenMP🄬

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

!$acc enter data copyin(x) create(y)
!$acc parallel loop
 do i=1,n
 y(i) = a*x(i) + b
 enddo
!$acc exit data delete(x) copyout(y)

!$omp target enter data map(to:x) map(alloc:y)
!$omp target teams distribute parallel do
 do i=1,n
 y(i) = a*x(i) + b
 enddo
!$omp end target teams distribute parallel do
!$omp target exit data map(delete:x) map(from:y)

Fortran Standard Parallelism: Do Concurrent

Introduced in ISO Standard Fortran 2008

Indicates loop can be run with out-of-order
execution

Can be hint to the compiler that loop may
be parallelizable

No current support for reductions, atomics,
device selection, conditionals, etc.

Fortran 202X (2023) specification will add
reductions

do concurrent (i=1:N,j=1:M)
 Computation
enddo

do i=1,N
 do j=1,M
 Computation
 enddo
enddo

Compiler Version DO CONCURRENT parallelization support

nvfortran ≥ 20.11 CPU and GPU with -stdpar

ifort/ifx ≥ 19.1
≥ 23.0

CPU with -fopenmp
CPU and GPU with -fopenmp-target-do-concurrent

gfortran ≥ 9 CPU with -ftree-parallelize-loops=<#Threads>

Directives vs. Standard Parallelism

do k=1,np
 do j=1,nt
 do i=1,nrm1
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
 enddo
 enddo
enddo

Original Non-Parallelized Code

!$acc enter data copyin(phi,dr_i)
!$acc enter data create(br)
!$acc parallel loop default(present) collapse(3) async(1)
do k=1,np
 do j=1,nt
 do i=1,nrm1
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
 enddo
 enddo
enddo
!$acc wait
!$acc exit data delete(phi,dr_i,br)

OpenACC Parallelized Code

do concurrent (k=1:np,j=1:nt,i=1:nrm1)
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
enddo

Fortran’s DO CONCURRENT

Longevity (ISO)

Lower code footprint

Less unfamiliar to domain
scientists

For accelerated computing,
directives are currently more
portable (may change)

Why use Fortran standard
parallelism instead of directives?

These reasons also apply to
codes that already use directives

Previous Implementations
We have previously tested replacing OpenACC with DC in a small surface diffusion tool
and in our medium-sized potential field solver code

The number of OpenACC directives were substantially or completely removed while
maintaining similar performance

github.com/predsci/POT3D
https://developer.nvidia.com/blog/using-fortran-
standard-parallel-programming-for-gpu-acceleration

Stulajter, et. al. “Can Fortran's `do concurrent' Replace Directives for
Accelerated Computing?”
Lecture Notes in Computer Science, 13194, 3-21. Springer, Cham. (2021)

Here, we apply DC to our large-scale production code:

Purpose: General-purpose simulations
 of the corona and heliosphere
 for use with solar physics and
 space weather research

Model: Spherical 3D resistive
 thermodynamic MHD equations.

Algorithm: Implicit and explicit time-stepping
 with finite-difference stencils.
 Implicit steps use sparse
 matrix preconditioned
 iterative solver
 Highly memory bandwidth bound!

Code: ~70,000 lines of Fortran

Parallelism: MPI + OpenACC + StdPar predsci.com/mas

The MAS Code

MAS OpenACC Implementation

MAS OpenACC Implementation Cont.

Single
portable
source for
GPU & CPU!

Code 1 [A]

Total lines of code: 73,865 (~2% OpenACC)

A roofline analysis shows how well given hardware is being
utilized compared to the theoretical maximum for the given code

Stencil operation for MAS
velocity parabolic operator

do k=2,nz-1
 do j=2,ny-1
 do i=2,nx-1
 result(i,j,k) =
 -6*x(i, j, k)
 + x(i-1,j ,k)
 + x(i+1,j ,k)
 + x(i ,j-1,k)
 + x(i ,j+1,k)
 + x(i ,j ,k-1)
 + x(i ,j ,k+1)
 enddo
 enddo
enddo

Floating Point
Operations: 7 FLOP
Data movement
(loads/stores):
8*8 Bytes = 64 Bytes
Arithmetic
Intensity:
FLOP / BYTE = 0.11

V1
00

900
 GB

/s

MAS OpenACC Implementation Cont: Performance Check

MAS OpenACC to Do Concurrent

Multiple versions based on these considerations:

Avoid code refactoring (or not)

Adhere to ISO 2018 Fortran Standard (or not)

 Data affinity statements (part of specification) not
used as they are not currently supported by some
compilers (e.g. GCC)

Using 202X preview & special features (or not)

 DC Reduction clause (nvfortran only)

 OpenACC directives within DC loops

Less OpenACC directives vs. performance loss

 Unified managed memory vs. manual memory
management

Code 2 [AD]

Start with Fortran 2018 specification
compliance; no unified managed memory; no
refactoring

No DC reduction support in current standard,
so array reduction code would need refactoring

Functions/routines inside loops:

 DC requires they are “pure”

 Even so, nvfortran does not currently support
them, so need OpenACC routine directives

Removing kernels used for array syntax and
intrinsics (e.g. MINVAL) would need refactoring

Code 2 [AD] Cont.

Previous DC results show using
unified managed memory (UM) can
reduce performance, so we leave
OpenACC data movement
directives

Kernel fusion (OpenACC
parallel regions) and
asynchronous computation
(OpenACC async clause) are not
available in DC

Code 2 [AD]:
OpenACC for DC-incompatible
loops and data management
DC for all remaining loops

Code 3 [ADU]

Here, activate NVIDIA unified managed
memory (UM) allowing removal of
OpenACC data directives

Can’t remove all OpenACC data
directives:

 declare in function calls

 Derived-type structures in OpenACC
loops when using default(present)

Code 3 [ADU]:
OpenACC for DC-incompatible loops,
DC for all remaining loops,
Unified managed memory

Code 4 [AD2XU]

Here, we use the Fortran 202X preview
implementation in nvfortran

DC reduction clause

No array reductions, but can use
OpenACC atomics in DC loop

Able to remove most data clauses as all
loops using derived types are now DC

Some OpenACC directives remain:

 atomic, declare, update, set
device_num, routine, kernels

Code 4 [AD2XU]:
OpenACC for functionality,
DC 202X for all loops,
Unified managed memory

Code 5 [D2XU]

Here, we allow minor code refactoring

Replaced kernels with expanded DC loops

Array reduction loops modified to avoid atomic

Removed set_device_num by using BASH
launching script (OpenMPI-based)
mpiexec -np <#> ./launch.sh ./mas ...

Use nvfortran flags to in-line routines, explicitly
listing routines that can’t be automatically in-lined

Can eliminate duplicate CPU-only routines

Code 5 [D2XU]:
DC 202X for all loops,
Some code refactoring,
Unified managed memory

launch.sh

Code 6 [D2XAd]

Spoiler alert: Unified Managed
Memory currently results in a non-
trivial performance hit, especially
across many MPI ranks

Here, we take Code 5, but add back
in (in minimal form) OpenACC data
directives

Result is minimal number of
directives, while retaining original
performance

Code 6 [D2XAd]:
DC 202X for all loops,
Some code refactoring,
OpenACC for data management

MIN()

MAS Test Case and Computational Environment

Medium-sized production
thermodynamic coronal relaxation

36 million cells, 24 minutes physical
time – Can fit on single 40GB GPU

DC has no effect on performance
for CPU-only MPI runs:

NCSA Delta 8xGPU Node

A100 40GB SXM4

Code Summary and Performance
Codes 1, 2, and 6
all show good
scaling and similar
performance

Code 5 uses
ZERO directives

Code 6 uses 5.2x
fewer directives
than the original
code, while Code
2 (within current
spec) uses 2.7x
fewer – with both
exhibiting similar
performance!

Performance Cont.
Codes 3, 4, and 5
show poor
performance and
poor scaling – all
use unified
managed memory

They have ~25%
lower performance
with 1 GPU

With multiple GPUs
over MPI (even on
the same node) the
performance is over
2x slower

NVIDIA compiler
developers are
aware of this issue
and working on a fix

Performance Cont.

Code 3 [ADU]

Code 2 [AD]

Unified Managed Memory is not utilizing CUDA-aware MPI,
resulting in a lot of CPU-GPU data transfers:
nsys profile --stats=true mpiexec -np 8 ./mas mas

Which version did we pick for our production code?

Two code versions (both easy to maintain):

 Main code has minimal OpenACC directives so it
can be compiled for GPUs using unified managed memory
Lines: Total: 68,972 OpenACC: 132 (0.2%)

 “ACC” branch of code has OpenACC data movement
added in; used in production releases
Lines: Total: 70,658 OpenACC: 593 (0.8%)

We have added OpenMP to OpenACC loops in ACC
branch to allow hybrid-CPU mode

May convert OpenMP to OpenMP target off-load for
future use with Intel GPUs

MAS Production Code Implementation

Main Branch

Summary and Future Outlook

Still need OpenACC/OpenMP target for some time

Future Fortran language additions & compiler
support for multi-vendor accelerators can lead to

one code to run on them all

Do Concurrent in Fortran for accelerated computing

ISO standard (~0 chance of deprecation)

More compact/simple code

Computation loops exhibit similar performance to
directives (when combined with directive manual
data management)

Can add hybrid MPI+thread CPU parallelism

Currently supported by NVIDIA and Intel for their
GPUs

Lack of performance features (no async, no
kernel fusion, no memory management)

Non-trivial performance drop for CUDA-aware
MPI with NVIDIA (fix in progress)

No current GPU DC support in GCC, AMD, Cray,
Flang, etc. (some in progress...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

