
Evaluating a Practical Parabolic Time Step Limit
for Unconditionally Stable Schemes in

a Thermodynamic MHD Model

Ronald M. Caplan, Craig D. Johnston,
Lars K. S. Daldorff, and Jon A. Linker

Outline

Unconditionally stable schemes

The problem of large time steps

Practical time-step limit

MAS thermodynamic MHD model

Test cases

Validation

Performance & scaling

Summary & future development

Thermodynamic MHD models (like many others) have
multiple time scales leading to vastly different explicit
time-step stability requirements

In order to make simulations tractable, we need to
exceed the most restrictive limits - here, we focus on
the parabolic operators

Unconditionally stable time stepping schemes are
guaranteed to be stable for any sized time step.

Implicit methods (using iterative matrix solvers)

Explicit methods (e.g. extended stability Runge Kutta)

When exceeding explicit time-step limits, one must be
careful about accuracy

Unconditionally Stable Schemes

Unconditionally Stable Schemes

Backward Euler

Yields a system of equations to solve

To avoid requiring nonlinear solvers,
we linearize nonlinear terms
(e.g. lagged diffusivity)

We use two non-communicating
preconditioners:

Implicit Backward-Euler (BE) + PCG

PC2
Non-overlapping domain
decomposition zero-fill

incomplete LU factorization
Less scalable, expensive,

much more effective

PC1
Point-Jacobi
GPU friendly,

scalable, cheap,
not very effective

Explicit RKG2(3/2) Super Time-stepping

Extended Stability Runge-Kutta schemes:
Explicit RK method with stages added for more
stability, rather than for more accuracy

We use the 2nd-order Gegenbauer method
(RKG2) [O’Sullivan (2019)] with an alpha of 3/2

TIP: Need to use odd
of stages in RKG2,
otherwise
amplification factor
goes to 1 at highest
mode!

”RKG allows for accurate modeling of solutions at early times
and as such if early times are under investigation RKG is the
optimal scheme. However, RKC, RKL, RKU, and RKG are all
linearly stable and as such will all approach the correct
solution asymptotically at long times.” [Skaras et. al. (2021)]

 Can be difficult to implement
 Requires good preconditioner to be efficient, (can

be difficult to formulate and implement efficiently)
 Requires linear(ized) operator
 Global communication (dot products) hurts scaling
 Only 1st-order accurate

 Robust, proven method
 Can be very efficient
 L-stable

 Easy to implement
 Can include nonlinearities
 Vectorizable (GPU-friendly)
 No global synchronization points (better scaling)
 2nd-order accurate
 Not as widely adopted & tested
 Can be slower than implicit methods
 Only A-stable

Unconditionally Stable Schemes

Implicit BE + PCG Explicit RKG2(3/2)

Example L-stable vs.
A-stable amplification
factors

A-stable method can
have problems damping
high wave modes over
limited time scales

B
E

+
P

C
G

R
K

L2
ASTRONUM 16 Result [Caplan et. al. (2017)]

The Problem with Large Time Steps
Errors with very large time steps are a problem in L-stable
methods, but worse in A-stable methods, as they often don’t damp
high wave modes efficiently

Extended stability Runge-Kutta schemes fall into this latter
category, and this issue can limit their applicability and robustness

One option is to run the parabolic advance in a series of “outer”
cycles (essentially reducing the time step for the operator) which
lowers the errors and repeatedly damps high wave modes

“For general applications the universal approach is to try different
numbers of steps and study any sensitivities.” [Dawes (2021)]

Is there a simple way to a-priory calculate the minimum
number of outer cycles we need/want?

How does adding these cycles affect performance?

A Practical Time Step Limit

[Johnston, et. al., in preparation]

Operator split
parabolic advance

Discrete form
(1st expansion term)

Max abs change in
u at grid cell k

Bound the relative
change in u at the
location of maximum
absolute change

Practical time step limit:

Viscosity:

Thermal Conduction:

Lagged diffusivity

Applied adaptively:
After each outer-cycle, recalculate!

Purpose:
 General-purpose simulations of the corona and
 heliosphere for use with solar physics and
 space weather research

Model:
 Spherical resistive thermodynamic MHD

Algorithms:
 Implicit & explicit time-
 stepping with finite-difference
 stencils. Implicit steps use a
 sparse matrix preconditioned
 iterative solver

Code:
 ~70,000 lines of Fortran
 parallelized with
 MPI + OpenACC + StdPar

The MAS Code predsci.com/mas

Different components of the model are used
depending on the domain and use-case

The MAS MHD Model

Resolution:
151x151x151

~ 3.4 million points

Test Cases
Test 1:

Resolution:
181x251x502

 ~ 22.8 million points

Modified test case used in
Astronum 2016 paper
[Caplan et. al. (2017)]

Test 2:

Thermodynamic
MHD relaxation

Thermodynamic
MHD relaxation

Modified low-res test
case based on
simulations used in
[Reeves et. al. (2019)]

Scaling runs (Test 2 only):
 Integrate for 6 simulation-minutes starting with the ~8 simulation-hour
 relaxation (subtract restart loading time)

Validation runs:
 Integrate relaxation for ~8 simulation-hours

Testing Procedure

 Can we get a solution as good (or better) as BE+PCG with RKG2
if we automatically outer-cycle at the practical time step limit?

 Can we get a “better” solution with BE+PCG if we outer-cycle it?

 How does outer-cycling affect performance?

 Is RKG2 competitive with BE+PCG?

Questions to address:

BE+PCG RKG2

SC1 SC1

SCA SCA

Tests:

SC1: 1 outer cycle (original)
SCA: Automatic adaptive
 outer cycles
 (practical time step)

Computational Environment

Allocations
provided by:

NCSA Delta 8xGPU Node

A100 40GB

SDSC Expanse 2xCPU Node

EPYC ROME 7742

In-house workstation with NVIDIA RTX 3090 Ti

CPU Core i5-13600KF

GPU RTX 3090 Ti

Peak DP
FLOPs

0.625 TFLOP/s

Memory 24 GB

Memory
Bandwidth

1008 GB/s

Tests performed on both
CPUs and GPUs

On CPUs, the PC2 preconditioner is
used for BE+PCG; on GPUs, PC1 is
used

On CPUs, the gfortran compiler is used
with OpenMPI 4, on GPUs, the NV
compiler is used with OpenMPI 3

Validation Results Test 1
RKG2 SC1 BE+PCG SCA RKG2 SCABE+PCG SC1

Validation Results Test 2
BE+PCG SC1 RKG2 SC1 BE+PCG SCA RKG2 SCA

Validation Timing Results
Test 1: Test 2:

Scaling Results Test 2 Thermal Conduction

Very few outer cycles were
needed in this test for TC

Therefore, SCA has similar
run times as SC1

Scaling is better with RKG2
than BE+PCG (PC2) on
CPUs

Run time for RKG2 is much
faster than BE+PCG (PC1)
on GPUs

Scaling of both schemes
similar on multi-GPU single
server runs

Scaling Results Test 2 Viscosity
The test problem required ~10
outer cycles for viscosity

Therefore, auto-cycle has slower
run time than single cycle

Scaling is better with RKG2 than
PCG (PC2) on CPUs

Run time for RKG2 is faster than
PCG (PC1) on GPUs with similar
scaling

RKG2 auto-cycle faster than PCG
single cycle:

 With PCG (PC1), always the case

 With PCG (PC2), it’s faster with
maximum CPUs due to better
scaling and PC2 effectiveness
decline

Scaling Results Test 2 Total Wall Clock (minus restart startup)

RKG2 auto-cycle
has comparable or
better performance
and scaling than
BE+PCG single-
cycle

BE+PCG auto-cycle
significantly slower
than single-cycle

Results
 Can we get a solution as good (or better) as BE+PCG with RKG2 if we

automatically outer-cycle at the practical time step limit?
 Yes (in our cases)

 Can we get a “better” solution with BE+PCG if we outer-cycle it?
 Yes (in our cases)

 How does outer-cycling affect performance?
 For BE+PCG, significant decrease in performance (in our cases)
For RKG2, small decrease in performance (in our cases)

 Is RKG2 competitive with BE+PCG?
 Yes (in our cases)

How general are these results??? [Johnston, et. al., in preparation]

Unconditionally stable methods are often necessary when
conditionally stable schemes’ time-step limits for operators (e.g.
parabolic) are too restrictive for practical simulations

Using “too large” of a time step can create large errors including
qualitative changes in the operator’s effect and/or inability to damp
high wave modes (oscillations)

We have tested an easy-to-calculate practical time step limit for
such schemes that can be applied as an operator-split outer cycle

The new limit can help fix known solution issues in extended
stability Runge-Kutta (super time stepping) methods that are due to
their poor amplification factors at high wave modes

Testing the method with RKG2 implemented in the MAS MHD code
recovered the solution accuracy of the BE+PCG method with
negligible effect on performance & scaling

Work is proceeding on the theoretical formulation/modification of
the practical time step, including careful testing, especially in
nonlinear cases [Johnston et al, in preparation]

Summary

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

