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Unconditionally Stable Schemes

0 Thermodynamlc MHD models (like many others) have
- multiple time scales leading to vastly different explicit
time-step stability requirements

~ @ In order to make simulations tractable, we need to
exceed the most restrictive limits - here, we focus on
the parabolic operators

® Unconditionally stable time stepping schemes are
guaranteed to be stable for any sized time step.

O Implicit methods (using iterative matrix solvers)

O Explicit methods (e.g. extended stability Runge Kutta)

CAUTION
® When exceeding explicit time-step Ilmlts one must be {  Excoeding time

scales!

Careful about accuracy




Unconditionally Stable Schemes

Implicit Backward-Euler (BE) + PCG Explicit RKG2(3/2) Super Time-stepping

® Backward Euler u"th — F(u™) @ Extended Stability Runge-Kutta schemes:
At Explicit RK method with stages added for more
® Yields a system of equations to solve stability, rather than for more accuracy

® We use the 2nd-order Gegenbauer method

® To avoid requiring nonlinear solvers, > el _
(RKG2) [O'Sullivan (2019)] with an alpha of 3/2

we linearize nonlinear terms

(e.g. lagged diffusivity) "RKG allows for accurate modeling of solutions at early times
and as such if early times are under investigation RKG is the
O We use two non_Communicating optimal scheme. However, RKC, RKL, RKU, and RKG are all

linearly stable and as such will all approach the correct

preconditioners: solution asymptotically at long times.” [Skaras et. al. (2021)]

ao Super Time-5tepping Speedup
4 PC1 A [ PC2 \ Haall— roe TIP: Need to use odd
_ _ , . # of stages in RKG2,
Pomt-Jlacobl Non-overlapplng domgln §v otherwise
GPU friendly, decomposition zero-fill =0 i ation f
scalable, cheap, incomplete LU factorization g 2 amplification _actor
| - ) | Less scalable, , g goes to 1 at highest

\ much more effective / LILL I mode!
5 10 20 -Jl_.l_ ].l:l_.l
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Unconditionally Stable Schemes

Implicit BE + PCG Vﬁ’ Explicit RKG2(3/2)
v Robust, proven method ; : o Easy to implement
v’ Can be very efficient ' v’ Can include nonlinearities
v’ L-stable ‘ v Vectorizable (GPU-friendly)
¥ Can be difficult to implement v No global synchronization points (better scaling)

X Requires good preconditioner to be efficient, (Can v’ 2nd-order accurate
be difficult to formulate and implement efficiently) x Not as widely adopted & tested
x Requires linear(ized) operator x Can be slower than implicit methods
¥ Global communication (dot products) hurts scaling % Only A-stable
¥ Only 1st-order accurate

O Example L-stable vs.

Exact

A-stable amplification Back Euler
/4 RKL2
factors _ - —— RKG2

f o T T T I /
L | I|I I|II II|II I|I ||II I|I I||I II|I II|I II|I lI|'
1 I'._.' Ill..-'l Il._‘lu'l i

O A-stable method can
nave problems damping
nigh wave modes over.

Imited time scales L , . — 050 3.075 3.100 3.125
‘ R i kix




ASTRONUM 16-Result — [Caplan et. al. (2017)]

BE+PCG (PC2) RKL2 (TC-only) RKL2 (TC+Visc)
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The Problem with - Large Time Steps —

O Errors with very large time steps are a problem in L-stable
methods, but worse in A-stable methods, as they often don’t damp Speed it UP

high wave modes efficiently | _
‘ -
() Extended stability Runge-Kutta schemes fall into this latter -

o

category, and this issue can limit their applicability.and robustness

) One option is to run the parabolic advance in a series of “outer’
_cycles (essentially reducing the time step for the operator) which
lowers the errors and repeatedly damps high wave modes

“For general applic;ations the universal approach is to try different
numbers of steps and study any sensitivities.” [Dawes (2021)]

Q) Is there a simple way to a-priory calculate the minimum
number of outer cycles we need/want?

(O How does adding these cycles affect performance?




A Practical Time Step Limit S

Operator split
parabolic advance

Discrete form
(15t expansion term)

Max abs change in
u at grid cell k

Bound the relative
change in u at the
location of maximum
absolute change

Practical time step limit:

a = 0.95

ou

8_t+1_ F(u)

yntl —
P

"t — | = At [F(u)
Fi(u)| = max (| F(u;)])

i — i

At,

Applied adaptively:
After each outer-cycle, recalculate!

|
Viscosity: Fisc(V) = E V- (v(x)pVv)
Thermal Conduction:
B (v = 1) my 1
Fi(T) = 9 ko P VRRGIVIVERYS

K(T) = fe(r) finoq(T) ko T>? bb

fmed(T) = (1 oz {T}‘Tcm}—m)'f'l

Lagged diffusivity
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The-MAS Caode —_ predsci.com/mas
AT S B - - i

OIS TSI 2 S
Purpose: '
General-purpose simulations of the corona and
heliosphere for use with solar physics and
space weather research

Model: g
Spherical resistive thermodynamic MHD

Algorithms:
Implicit & explicit time-
stepping with finite-difference
stencils. Implicit steps use a
sparse matrix preconditioned
iterative solver

¢/ f 7
OpenACC

. At f WEBINAR -
~70,000 lines of Fortran W7 ol EUEfT
parallelized with . Ronald M. Caplan JULY 11, 2023

Predictive Science Inc. 1 PM EDT/10 AM PDT

MPI + OpenACC + StdPar




The MAS MHD-Model e
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Different components of the model are used‘*
depending on the domain and use-cas_e_




Test Cases = ——
Test 2: ' - :

Modified test case Used In

Astronum 2016 paper
[Caplan et. al. (2017)]

Test 1:

‘Modified low-res test

case based on
simulations used in
[Reeves et. al. (2019)] |

=10

| Frame: D03 |

5y

0y

= o
Temperature (M)

=
in

s = R ﬁf“}téi
g -

Resolution: : h 9 : Résolution: Th e .
151x151x151 | M:g”ol y”?.m'c 181x251x502. M:E)mo| y”?.m'c
relaxation 1~ 22 8 million points b gl

~ 3.4 million points

Validation runs: - | B >
Integrate relaxation for ~8 simulation-hours (\VALIDATION

Scaling runs (Test 2 only): -
Integrate for 6 simulation-minutes starting with the ~8 simulation-hour

relaxation (subtract restart loading time)




Testing Procedure —

Quéstions to address:

d Can we get a solution as good (or better) as BE+PCG with RKG2
if we automatically outer-cycle at the practical time step limit?

 Can we get a “better” solution with BE+PCG if we outer-cycle it?
J How does outer-cycling affect performance?
d Is RKG2 competitive with BE+PCG?

Tests:

SC1: 1 outer cycle (original) , RKG2
SCA: Automatic adaptive scC1l -
outer cycles | SCA SCA
(practical time step)




Computational Environment

O Tests performed on both _ | — .

~* SAN DIEGO SUPERCOMPUTER CENTER

O On CPUs, the PC2 preconditioner s

used for BE+PCG: on GPUs, PC1 is - = | e ———
. | ! (we use 64)

used ,‘ 7z Peak FLOP/s 7.0 TFLOP/s
. Sl 256 GB
® On CPUs, the gfortran compiler is used | [EPYC Kome L7 3 ol Memory Bandwidth 3814 GBe
with OpenMP1 4,-on GPUs, the NV

compiler is used with OpenMPI| 3

# CPUs x Mc:del (2x) EPYC 7742

# GPUs x Model 8x A100-40GE SXM4
Peak DP FLOP/s / GPU 9.8 TFLOP/s
Memory / GPU 40 GB
Memnry Bandwu:ltthF'U 1555 GB/s

CPU Core i5-13600KF
GPU RTX 3090 Ti
Peak DP |0.625 TFLOP/s

FLOPs
Memory |24 GB

Memory 1008 GB/s
Bandwidth

AIIocat'ions
provided by:




Validation Results Test 1
BE+PCG SC1 BE+PCG SCA RKG2 SCA

rel.0092  $=32.5002

Velocity (#) (kmis)
Velocity (#) (kmis)
Velocity (4 (km's)

Welocity (4 (k)

r=1.0002 r=1.0002 r=1.0002

10.1
J 0.c
®|
1-0.
I




Validation Results Test 2
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Validation Timing-Results

MA Thermodynamic Relaxation (Test 1) MAS Thermodynamic Helaatinn (Test 2)
NVIDIA RTX 3090Ti GPU | | 32 Nodes of (2x) AMD EPYC ROME 7742 CPU

Viscosity Viscosity 8704
Thermal Conduction 17041 Thermal Conduction

| mmm Rest of Code

= =
o MW
o wu o
o o o
e o 9O

Wall clock time (seconds)
Wall clock time (seconds)

H Rest of Code
| 11111 11121 i
| 9245 . 4481
. i )

PCG (PC2) RKG2 PCG (PC2) RKG2 PCG (PC2) RKG2 PCG (PC2)
SC1 SC1 SCA SC1 SC]
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Scaling Results Test 2 Thermal Conducti

Very few outer cycles were
needed in this test for TC

Thereforé, SCA has similar
run times as SC1

Scaling is better with RKG2
than BE+PCG (PC2) on
CPUs

Run time for RKG2 is much
faster than BE+PCG (PCA1)
on GPUs

Scaling of both schemes
similar on multi-GPU single
Server runs

on

Time (seconds)

| == BE+PCG 5C1

7| <l BE+PCG SCA

| =O= RKG2 sC1
| @ RKG2 SCA

Ideal Scaling

2

4 8 16

(2x) EPYC 7742 CPU
# Nodes

Time (seconds)

151

+ BE+PCG S5C1 PC1
?j -l BE+PCG SCA PC1
| =O= RKG2 SC1 PC1
| =@~ RKG2 SCA PC1
| Ideal Scaling

2 4
A100(40GB) GPU
# GPUs (Single Node)




" Scaling Results Test-2 \iscosi

The test problem required ~10
outer cycles for viscosity

Therefore, auto-cycle has slower
run time than single cycle

Scaling is better with RKG2 than
-PCG (PC2) on CPUs

Run time for RKG2 is faster than
PCG (PC1) on GPUs with similar
scaling

RKG2 auto-cycle faster than PCG
single cycle:

* With PCG (PC1), always the case

Time (seconds)
Time (seconds)

h
o

| == BE+PCG SC1 .:::'::'*.:;.._ —— BE+PCG SC1 PC1 o
Wit PG (PC2),its fasterwin (RN K S Ete
maximum CPUs due to better _ -l- RKG2 SCA % -- RKG2 SCA PC1

-~ Ideal Scaling

scaling and PC2 effectiveness = 1 3 4 3

decline (2x) EPYC 7742 CPU Al100(40GB) GPU
# Nodes # GPUs (Single Node)

-~ Ideal Scaling




Scaling Results Test 2 Total Wall Cleck (minus restart startup

Wall minus startup | | Wall minus startup

O RKG2 auto-cycle

- has comparable or
better performance
and scaling than
BE+PCG single-
cycle '

NN
\h\h\}\h& s
p
p

BE+PCG auto-cycle
significantly slower
than single-cycle

—— —
L 7
L= 0
= =
o o
i L
Q) a
w T
S e
a a
£ £
= =

—&— BE+PCG SC1 —— BE+PCG 5C1 PCl
- BE+PCG SCA N\Y 1 == BE+PCG SCA PC1
=Q= RKG2 SC1 3 == RKG2 SC1 PCl
-@- RKG2 SCA i -@- RKG2 SCA PCl

-~ Ideal Scaling ------ Ideal S5caling
1 2 4 8 1 2 4

(2x) EPYC 7742 CPU A100(40GB) GPU
# MNodes # GPUs (Single Node)




Results - = | -

 Can we get a solution as good (or better) as BE+PCG with RKG2 if we
automatically outer-cycle at the practical time step limit?

* Yes (in our cases) '

~H Can we get a “better” solution with BE+PCG if we outer-cycle it?
*Yes (in our cases) |

= How does outer-cycling affect performance?

* For BE+PCG, significant decrease in performance (in our cases)' '
For RKG2 small decrease in performance (in our cases)

d |s RKG2 competitive with BE+PCG’?
*Yes (in our cases)

HOW geheral a.re these reSUItS??7 | I[Johnston et aIJ:l;gprepara’rr:cr\r

s :" et hy hﬁﬁ Lo,
L]




Summary-

O Unconditionally stable methods are often necessary when
conditionally stable schemes’ time-step limits for operators (e.g. At — ‘uk ‘

parabolic) are too restrictrive_ for practical simulations p — & ‘F(’Ufk)

O Using 00 large” of a time step can create large errors including
qualitative changes in the operator’s effect and/or inability to damp
high wave modes (oscillations)

k:|F(ug)| = max|F(u)

O We have tested an easy-to-calculate pralctical time step.limit for
such schemes that can be applied as an operator-split outer cycle

O The new limit can help fix known solution issues in extended
stability Runge-Kutta (super time stepping) methods that are due to
their poor amplification factors at high wave modes

O Testing the method with RKG2 implemented in the MAS MHD code
recovered the solution accuracy of the BE+PCG method with
negligible effect on performance & scaling

O Work is pro'ceed'ing on the theoretical formulation/modification of
the practical time step, including careful testing, especially in
nonlinear cases [Johnston et al, In preparation]
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