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Thermodynamic MHD models (like many others) have 
multiple time scales leading to vastly different explicit 
time-step stability requirements

In order to make simulations tractable, we need to 
exceed the most restrictive limits - here, we focus on 
the parabolic operators

Unconditionally stable time stepping schemes are 
guaranteed to be stable for any sized time step.

Implicit methods (using iterative matrix solvers)

Explicit methods (e.g. extended stability Runge Kutta)

When exceeding explicit time-step limits, one must be 
careful about accuracy

Unconditionally Stable Schemes



Unconditionally Stable Schemes

Backward Euler

Yields a system of equations to solve

To avoid requiring nonlinear solvers, 
we linearize nonlinear terms 
(e.g. lagged diffusivity)

We use two non-communicating 
preconditioners:

Implicit Backward-Euler (BE) + PCG

PC2 
Non-overlapping domain 
decomposition zero-fill 

incomplete LU factorization
Less scalable, expensive, 

much more effective  

PC1
Point-Jacobi 
GPU friendly, 

scalable, cheap, 
not very effective

Explicit RKG2(3/2) Super Time-stepping

Extended Stability Runge-Kutta schemes: 
Explicit RK method with stages added for more 
stability, rather than for more accuracy 

We use the 2nd-order Gegenbauer method 
(RKG2) [O’Sullivan (2019)] with an alpha of 3/2

TIP:  Need to use odd 
# of stages in RKG2, 
otherwise 
amplification factor  
goes to 1 at highest 
mode!

”RKG allows for accurate modeling of solutions at early times 
and as such if early times are under investigation RKG is the 
optimal scheme. However, RKC, RKL, RKU, and RKG are all 
linearly stable and as such will all approach the correct 
solution asymptotically at long times.” [Skaras et. al. (2021)]



 Can be difficult to implement
 Requires good preconditioner to be efficient, (can 

be difficult to formulate and implement efficiently)
 Requires linear(ized) operator
 Global communication (dot products) hurts scaling
 Only 1st-order accurate

 Robust, proven method
 Can be very efficient
 L-stable

 Easy to implement
 Can include nonlinearities
 Vectorizable (GPU-friendly)
 No global synchronization points (better scaling)
 2nd-order accurate
 Not as widely adopted & tested
 Can be slower than implicit methods
 Only A-stable 

Unconditionally Stable Schemes

Implicit BE + PCG Explicit RKG2(3/2)

Example L-stable vs. 
A-stable amplification 
factors

A-stable method can 
have problems damping 
high wave modes over 
limited time scales
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The Problem with Large Time Steps
Errors with very large time steps are a problem in L-stable 
methods, but worse in A-stable methods, as they often don’t damp 
high wave modes efficiently

Extended stability Runge-Kutta schemes fall into this latter 
category, and this issue can limit their applicability and robustness

One option is to run the parabolic advance in a series of “outer” 
cycles (essentially reducing the time step for the operator) which  
lowers the errors and repeatedly damps high wave modes

“For general applications the universal approach is to try different 
numbers of steps and study any sensitivities.”  [Dawes (2021)]

Is there a simple way to a-priory calculate the minimum 
number of outer cycles we need/want?

How does adding these cycles affect performance?



A Practical Time Step Limit

[Johnston, et. al., in preparation]

Operator split 
parabolic advance

Discrete form 
(1st expansion term)

Max abs change in 
u at grid cell k

Bound the relative 
change in u at the 
location of maximum 
absolute change

Practical time step limit:

Viscosity:

Thermal Conduction:

Lagged diffusivity

Applied adaptively: 
After each outer-cycle, recalculate! 



Purpose:   
  General-purpose simulations of the corona and
  heliosphere  for use with solar physics and
  space weather research
 

Model:
  Spherical resistive thermodynamic MHD
 

Algorithms:
  Implicit & explicit time-
  stepping with finite-difference 
  stencils. Implicit steps use a 
  sparse matrix preconditioned 
  iterative solver
 

Code:
  ~70,000 lines of Fortran
  parallelized with 
  MPI + OpenACC + StdPar

The MAS Code predsci.com/mas



Different components of the model are used 
depending on the domain and use-case

The MAS MHD Model



Resolution: 
151x151x151 

~ 3.4 million points

Test Cases
Test 1:

Resolution: 
181x251x502

 ~ 22.8 million points

Modified test case used in 
Astronum 2016 paper 
[Caplan et. al. (2017)]

Test 2:

Thermodynamic 
MHD relaxation

Thermodynamic 
MHD relaxation

Modified low-res test 
case based on 
simulations used in  
[Reeves  et. al. (2019)]

Scaling runs (Test 2 only): 
  Integrate for 6 simulation-minutes starting with the ~8 simulation-hour 
   relaxation (subtract restart loading time)

Validation runs: 
   Integrate relaxation for ~8 simulation-hours



Testing Procedure 

 Can we get a solution as good (or better) as BE+PCG with RKG2 
if we automatically outer-cycle at the practical time step limit?

 Can we get a “better” solution with BE+PCG if we outer-cycle it?

 How does outer-cycling affect performance? 

 Is RKG2 competitive with BE+PCG? 

Questions to address:

BE+PCG RKG2

SC1 SC1

SCA SCA

Tests:

SC1: 1 outer cycle (original)
SCA: Automatic adaptive 
         outer cycles
         (practical time step)



Computational Environment

Allocations 
provided by:

NCSA Delta 8xGPU Node

A100 40GB

SDSC Expanse 2xCPU Node

EPYC ROME 7742

In-house workstation with NVIDIA RTX 3090 Ti

CPU Core i5-13600KF

GPU RTX 3090 Ti

Peak DP 
FLOPs

0.625 TFLOP/s

Memory 24 GB

Memory 
Bandwidth

1008 GB/s

Tests performed on both 
CPUs and GPUs

On CPUs, the PC2 preconditioner is 
used for BE+PCG; on GPUs, PC1 is 
used

On CPUs, the gfortran compiler is used 
with OpenMPI 4, on GPUs, the NV 
compiler is used with OpenMPI 3



Validation Results Test 1
RKG2 SC1 BE+PCG SCA RKG2 SCABE+PCG SC1



Validation Results Test 2
BE+PCG SC1 RKG2 SC1 BE+PCG SCA RKG2 SCA



Validation Timing Results
Test 1: Test 2:



Scaling Results Test 2 Thermal Conduction

Very few outer cycles were 
needed in this test for TC

Therefore, SCA has similar 
run times as SC1

Scaling is better with RKG2 
than BE+PCG (PC2) on 
CPUs

Run time for RKG2 is much 
faster than BE+PCG (PC1) 
on GPUs

Scaling of both schemes 
similar on multi-GPU single 
server runs



Scaling Results Test 2 Viscosity
The test problem required ~10 
outer cycles for viscosity

Therefore, auto-cycle has slower 
run time than single cycle

Scaling is better with RKG2 than 
PCG (PC2) on CPUs

Run time for RKG2 is faster than 
PCG (PC1) on GPUs with similar 
scaling

RKG2 auto-cycle faster than PCG 
single cycle:

 With PCG (PC1), always the case

 With PCG (PC2), it’s faster with 
maximum CPUs due to better 
scaling and PC2 effectiveness 
decline



Scaling Results Test 2 Total Wall Clock (minus restart startup)

RKG2 auto-cycle 
has comparable or 
better performance 
and scaling than 
BE+PCG single-
cycle
 

BE+PCG auto-cycle 
significantly slower 
than single-cycle



Results 
 Can we get a solution as good (or better) as BE+PCG with RKG2 if we 

automatically outer-cycle at the practical time step limit?
 Yes (in our cases)

 Can we get a “better” solution with BE+PCG if we outer-cycle it?
 Yes (in our cases)

 How does outer-cycling affect performance? 
 For BE+PCG, significant decrease in performance (in our cases)
For RKG2, small decrease in performance (in our cases)

 Is RKG2 competitive with BE+PCG? 
 Yes (in our cases)

How general are these results??? [Johnston, et. al., in preparation]



Unconditionally stable methods are often necessary when 
conditionally stable schemes’ time-step limits for operators (e.g. 
parabolic) are too restrictive for practical simulations

Using “too large” of a time step can create large errors including 
qualitative changes in the operator’s effect and/or inability to damp 
high wave modes (oscillations)

We have tested an easy-to-calculate practical time step limit for 
such schemes that can be applied as an operator-split outer cycle

The new limit can help fix known solution issues in extended 
stability Runge-Kutta (super time stepping) methods that are due to 
their poor amplification factors at high wave modes

Testing the method with RKG2 implemented in the MAS MHD code 
recovered the solution accuracy of the BE+PCG method with 
negligible effect on performance & scaling

Work is proceeding on the theoretical formulation/modification of 
the practical time step, including careful testing, especially in 
nonlinear cases [Johnston et al, in preparation]

Summary
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