
Simulating Solar Storms on GPUs with
Fortran Standard Parallelism

Ronald M. Caplan, Miko M. Stulajter, Jon A. Linker,
Tibor Torok, Cooper Downs, Andres Reyes, Viacheslav S. Titov,

Roberto Lionello, and Pete Riley

2024

The `what’ & `why’ of
Solar Storms

How you can model
Solar Storms

Run on GPUs with
“just Fortran”?

Let’s see it!

Outline

What are Solar Storms?

Large explosive events on the
Sun such as solar flares and
coronal mass ejections (CME)

CMEs can eject billions of tons of
magnetized million-degree
plasma out into space

They originate in regions of
strong magnetic field on the solar
surface called “active regions”

Their structure can be
mathematically modeled with a
twisted “flux rope” magnetic field

Why Study Solar Storms?

Interesting! CMEs involve multiple
levels of physical scales and
processes

Having many observations allows
validation of physical models

Important! CME impacts at Earth
can cause interference & damage
to our electronic infrastructure including
GPS satellites and the power grid

Numerical models are a
key tool in solar storm analysis
and prediction

How you can Model Solar Storms: Overview

How you can Model Solar Storms: (1) Read the Sun

Grab observations of the solar surface
magnetic field

Most observations along Sun-Earth line,
but need full Sun data!

 “Synoptic”/Diachronic: Take band of data over
~28 day solar rotation (default)

 Synchronic: Surface flux transport models can
simulate the flow of the field behind the Sun

Automatic processing of full-Sun data
including binning, flux balancing, and
smoothing

DC

github.com/predsci/hipft

DC

Stulajter, et. al. Lec Notes in Comp
Sci, 13194, 3-21 (2022)

How you can Model Solar Storms: (2) Calm before the storm

Use surface field as lower boundary
condition for a magnetohydrodynamic
(MHD) simulation of the Sun’s atmosphere

Start with a “potential field” solve for the
initial 3D magnetic field (similar to POT3D)

Run the MHD simulation long enough to
reach a quasi-steady background solution

Trace through solution (with a physics
model) to create synthetic observations
directly comparable to real ones

DC

github.com/predsci/pot3d

How you can Model Solar Storms: Design your perfect storm

Design flux rope(s) with GUI

Step-by-step guides through
tool-tips and tutorial videos

Test if flux rope(s) are eruptive
with reduced-model MHD
simulation (quick ~20 minute
turnaround time on 4xGPUs)

Refine rope(s)
parameters
and repeat!

How you can Model Solar Storms: Release the storm!

Use MHD background
solution as initial condition

Insert flux rope(s)

Run full MHD CME
simulation from Sun to
Earth

Re-mesh after initial
eruption to reduce
compute time

How you can Model Solar Storms: What now?

Auto-generated reports to
analyze CME

Simulation can be used as
input to other models such
as the STAT solar energetic
particle model

How you can Model Solar Storms: Where? How does it work?

Web GUI hosted at
NASA’s CCMC

Simulations are run on a
single AWS GPU instance

Computationally
expensive MHD
simulations run using
the MAS code

ccmc.gsfc.nasa.gov

ccmc.gsfc.nasa.gov/models/CORHEL-CME~1

EC2 P3 8xV100

MAS: Magnetohydrodynamic Algorithm Outside a Sphere
GPU Implementation:

Caplan et. al. J. of
Phys.: Conf.
Series. ASTRONUM
2018. 1225,1 (2019)
012012

Caplan et. al. IEEE
IPDPSW Proceedings.,
(2023) 582-590.

MAS: Numerical Methods and Code Details
Finite difference on a logically rectangular
non-uniform spherical grid

Preconditioned (PC) Conjugate Gradient
solvers with two PCs, PC1: GPU & CPU, and
PC2 (better!): CPU-Only (for now)

Fortran, parallelized with MPI, later
GPU-accelerated with MPI+OpenACC

Highly memory bandwidth bound! (low AI)

Fortran on GPUs: How?

Introduced in ISO Standard
Fortran 2008

Indicates loop can be run with
out-of-order execution

Can be hint to the compiler that
loop may be parallelizable

Standard
Language

DC

Low-Level APIsDirective APIs

do concurrent (i=1:N,j=1:M)
 Computation
enddo

No current support for
atomics, device selection,
conditionals, etc.

Fortran 2023
specification added
reductions

Libraries

Fortran on GPUs: What works where? (currently)

DC

Compatibility Matrix
[A. Herten]github.com/AndiH/gpu-lang-compat

(GCC/HPE) (Converter*)

(Early)

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

*github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

Flang?

(HPE)

Fortran on GPUs: Why Just Fortran?

do k=1,np
 do j=1,nt
 do i=1,nrm1
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
 enddo
 enddo
enddo

!$acc enter data copyin(phi,dr_i)
!$acc enter data create(br)
!$acc parallel loop default(present) collapse(3) async(1)
do k=1,np
 do j=1,nt
 do i=1,nrm1
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
 enddo
 enddo
enddo
!$acc wait
!$acc exit data delete(phi,dr_i,br)

do concurrent (k=1:np,j=1:nt,i=1:nrm1)
 br(i,j,k) = (phi(i+1,j,k)-phi(i,j,k))*dr_i(i)
enddo

Longevity (ISO)

Smaller code footprint

More familiar to domain
scientists

Parallelism on CPUs too!

Currently less portable than
directives (may change)

These also apply to
legacy codes!

Fortran Standard Parallelized Code

OpenACC Parallelized Code

Original Non-Parallelized Code
Why use Fortran
standard parallelism?

Fortran on GPUs: Getting data where it needs to be

!$acc enter data copyin(x)
!$acc exit data copyout(x)

-gpu=managed
-gpu=unified

CPU and GPU have separate
memories

Transfer between memories is
slow, so want to keep data on GPU

OpenMP/ACC have explicit data
movement directives

Unified memory (UM) auto pages
data so can make DC efficient
without data directives

Grace-Hopper has fast CPU -
GPU memory sharing, so it
can perform as well with UM
as manual data management!

Figure courtesy of Jeff Larkin, NVIDIA

Fortran on GPUs: MAS Implementation
Caplan et. al., 13th AsHES Workshop,
IEEE IPDPSW Proceedings., (2023) 582-590Replaced OpenACC loops with DC

Left OpenACC for reductions (DC “reduce”
too new!), and for minimal needs (routine,
device selection, etc.)

Two branches:
 Development: Minimal OpenACC
 Production: Development with OpenACC

 added for data movement

Experimental version with ZERO directives

Performance of Production branch similar to
original OpenACC implementation

Performance of Development and
Experimental branch slower due to non-
optimal UM with MPI
(should get better with updates (e.g. GH)

Exp

Dev

Orig

Prod

Size: 36 million cells

Fortran on GPUs: MAS Implementation

Orig ProdDev ExpOrig

(2%) (0.2%) (0.9%)

Let’s see it!

Real case: Solar
storm on 3/28/2022:

STEREO-A COR2

Simulated CME:

Computational Environment:

nvhpc 24.1 OpenMPI 4
gfortran 10.2 OpenMPI 4

Let’s see it!

Full design and simulation of the CME uses six runs of MAS,
each with various grid sizes and run times:

EC2
P3

Take away

The MAS code, GPU-accelerated with
Fortran standard parallelism (do concurrent) and

minimal OpenACC data movement directives,
allows us to achieve a one day turn-around for realistic
CME simulations on a single multi-GPU compute node

Coming Soon! Total Solar Eclipse
PSI has a tradition to use our MAS MHD model to predict the appearance of
upcoming total solar eclipses:

predsci.com/eclipse

2017

2019

2021

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

