

An Open Source High-Performance Flux Transport Model

Ronald M. Caplan¹, Miko M. Stulajter¹, James A. Turtle¹, Jon A. Linker¹, Cooper Downs¹, Lisa A. Upton², Charles Nicholos Arge³, Raphael Attie³, Carl J. Henney⁴, and Nikolai Pogorelov⁵ (1) Predictive Science Inc., (2) Southwest Research Institute, (3) NASA Goddard Space Flight Center, (4) Air Force Research Laboratory Kirkland AFB, (5) University of Alabama in Huntsville

Predictive Science Inc.

Overview

- Surface flux transport models
- Open Source Flux Transport (OFT)
- High Performance Flux Transport (HipFT)
- Flow and diffusion models
- Data Assimilation
- Multiple Realizations
- Numerical Methods
- Code Implementation
- → Examples
- Availability

Surface Flux Transport Models

- SFT treats the solar surface radial magnetic field as a scalar quantity subject to 2D surface flows and processes
- Used to generate full-Sun maps, constrain dynamo models, study surface dynamics, solar cycle prediction, etc.
- Many models exist: ADAPT, LMSAL-ESFAM, AFT, etc.
- While some produce publicly available full-Sun maps, none are currently open-source or able to be run on-demand

The Open Source Flux Transport Model (OFT)

- Part of the "Improving Space Weather Predictions with Data-Driven Models of the Solar Atmosphere and Inner Heliosphere" SWQU project
- Open source and extensible Three main components:

OFTpy: ConFlow:

HipFT:

Aquire and prepare observational data Generate supergranular convective flows Integrate the flux transport model

High Performance Flux Transport Model (HipFT)

Implements advection, diffusion, data assimilation, and flux emergence over multiple realizations using high-accuracy numerical methods and CPU/GPU parallelism

$$\frac{\partial B_r}{\partial t} = -\nabla_s \cdot \left(B_r \, \mathbf{v} \right) + \nabla_s \cdot \left(\nu \, \nabla_s \, B_r \right) \cdot$$

$$\nabla_s \cdot (B_r \mathbf{v}) = \frac{1}{R_{\odot} \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta B_r v_{\theta}) + \frac{1}{R_{\odot} \sin \theta} \frac{\partial}{\partial \phi} (B_r v_{\theta})$$

$$\nabla_s \cdot (\nu \, \nabla_s \, B_r) = \frac{1}{R_{\odot}^2 \, \sin \theta} \frac{\partial}{\partial \theta} \left(\nu(\theta, \phi, B_r) \, \sin \theta \, \frac{\partial B_r}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial B_r}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial B_r}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial B_r}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial B_r}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \theta} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \sin^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \left(\nu(\theta, \Phi, B_r) \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \cos^2 \theta} \, \frac{\partial}{\partial \phi} \right) + \frac{1}{R_{\odot}^2 \, \frac$$

Predictive Science In

 ∂B_r

HipFT Flow Models

Differential rotation

$$v_{\phi}(\theta) = \left[d_0 + d_2 \cos^2(\theta) + d_4 \cos^4(\theta)\right] \sin \theta,$$

Meridianal flows

$$v_{\theta}(\theta) = -\left[m_1 \cos \theta + m_3 \cos^3 \theta + m_5 \cos^5 \theta\right] \sin \theta$$

Velocity attenuation

$$v_{\theta/\phi} \to v_{\theta/\phi} \left[1.0 - \tanh\left(\frac{|B_r|}{B_0}\right) \right],$$

Predictive Science Inc.

90

60

30

0

-30

-60

Latitude (degrees)

HipFT Flow Models

- Diffusion in SFT models used as a proxy for the flux cancellation caused by granular and super-granular motions
- However, there are advantages to directly modeling these flows
- The default HipFT resolution of 1024x512 is high enough to resolve most of the super-granular scale sizes
 - ConFlow generates a sequence of flow data encompassing random motions and super-granulation
 - HipFT reads in the files and drives the FT with the flows
 - Some diffusion is still necessary to represent flux cancellation at smaller scales

ConFlow

HipFT Diffusion Models

- Diffusion coefficient can be constant, or a user-defined spatially varying file
- HipFT can be used as a magnetogram smoother, in which case one can select a grid-based diffusion coefficient

 $\nu(\theta,\phi)$

$\nu_q = \alpha_{\nu} \left[(\Delta \theta)^2 + (\Delta \phi \sin \theta)^2 \right],$

DISK LOS DATA

Acquire data (e.g. HMI M720s LOS through JSOC drms py package)

Convert line-of-sight field into radial field: $B_r = B_{\rm los}/\mu$

Map to Carrington frame with resolution 10240 x 5120 to avoid under-sampling

Reduce size with fluxpreserving integral binning:

- Set quality weights: $\mu = \cos \theta_d \in [0, 1]$
- θ_d is the center to limb angle

Use weights with power and cutoff parameters to assimilate data into HipFT: $= \mu^{\alpha_{\mu}}$ $\mu < \mu_{\rm lim}$ 0.W. $(F B_{r:d} - F B_r)$

Data Assimilation

 Data assimilation uses the output data from **OFT**py

A default weighting function is included in the data cube, applied as:

$$B_r \to F B_{r;d} + (1 - F)$$

 The center-to-limb distance is also provided, which can be used to generate a user-defined custom weight profile:

 $F = \mu^{\alpha_{\mu}}$

 $\mu < \mu_{\lim} \& |\theta_1| < \theta_{1,\lim},$

 B_r .

F = 0 o.w.,

Multiple Realizations

- Can run multiple realizations simultaneously across many model parameters
- Current cross-realization parameters include diffusion rate, flow profile coefficients, flow attenuation levels, and data assimilation options
- Post processing python scripts are included to analyze results

HipFT Numerical Methods

Non-uniform, logically-rectangular spherical surface staggered grid

•	Br
\diamond	Vθ
	Vφ

HipFT Numerical Methods

ADVECTION: 3rd-order SSPRK(4,3) DIFFUSION: 2nd-order Runge-Kutta-Gegenbauer Super Time-Stepping

ADVECTION: 3rd-order WENO3 **DIFFUSION:** 2nd-order Central Finite Difference

Validation:

 $v_{\phi} = \Omega \, \sin \theta$

 $\Omega = 1.8076...\,\mathrm{km/s}$

 $\nu = 500 \,\mathrm{km}^2/\mathrm{s}$

W Predictive Science Inc.

$$u(\theta,\phi,t) = 1000 e^{-42\nu t} \left(Y_6^0(\theta,\phi) + \sqrt{\frac{14}{11}} Y_6^5(\theta,\phi) \right)$$

$$\Delta\theta, \Delta\phi=\pi/16$$

 $\Delta \theta, \Delta \phi = \pi/32$

 $\Delta\theta, \Delta\phi = \pi/128$

HipFT Code Implementation

- Written in Fortran 2023
- Parallelized for multi-core CPU and GPUs with Fortran standard's `do concurrent` and **OpenMP** Target for CPU-GPU data movement

do concurrent (i=1:N,j=1:M) Computation enddo

!\$omp target enter data map(to:a) !\$omp target enter data map(alloc:b)

Computation

- !\$omp target exit data map(from:a)
- !\$omp target exit data map(release:b)
- Parallelized for multiple multi-CPU/GPU nodes across realizations with MPI

IP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Rev

result) 1 i ana ita i ortran

HipFT Code Performance

Test: 28-day run at 1024x512 with analytic flow models and diffusion. Eight realizations spanning various levels of diffusion and flow attenuation

OFT Example Production Run

Initial map from AFT model, HMI data assimilation (1-hour cadence), ConFlow (1CR) and analytic flows with 500G attenuation, diffusion of 175 km²/s

Runtime on an NVIDIA RTX 2080Ti GPU:

15

Butterfly Diagram (1CR average)

Comparison of OFT to other SFT models

- Maps from FT models are processed by interpolating to 300x150 resolution, flux balancing, and smoothing
- Note some models apply scaling factors to the HMI data 2014-06-14 23:59:52 2014-06-15 08:00:00

HipFT Availability

HipFT Installation

> git clone https://github.com/predsci/HipFT.git

> cd HipFT

> cp build examples/build <CLOSEST>.sh build local.sh

Edit build local.sh to reflect local system/compiler

> ./build local.sh

> cd testsuite; ./run test suite.sh

Data set for production level example run:

https://zenodo.org/records/10271121

18

GitHub

Full description of OFT (and HipFT) will be given in a series of papers (in preparation)

More features being added to HipFT:
→ Random flux emergence, source terms
→ Quality of life updates + processing

