
Can Fortran’s ‘do concurrent’ Replace

Directives for Accelerated Computing?

Miko M. Stulajter(B) , Ronald M. Caplan ,
and Jon A. Linker

Predictive Science Inc.,
9990 Mesa Rim Road Suite 170,

San Diego, CA 92121, USA
{miko,caplanr,linkerj}@predsci.com

http://www.predsci.com

Abstract. Recently, there has been growing interest in using standard
language constructs (e.g. C++’s Parallel Algorithms and Fortran’s do

concurrent) for accelerated computing as an alternative to directive-
based APIs (e.g. OpenMP and OpenACC). These constructs have the
potential to be more portable, and some compilers already (or have
plans to) support such standards. Here, we look at the current capabil-
ities, portability, and performance of replacing directives with Fortran’s
do concurrent using a mini-app that currently implements OpenACC
for GPU-acceleration and OpenMP for multi-core CPU parallelism. We
replace as many directives as possible with do concurrent, testing various
configurations and compiler options within three major compilers: GNU’s
gfortran, NVIDIA’s nvfortran, and Intel’s ifort. We find that with the
right compiler versions and flags, many directives can be replaced without
loss of performance or portability, and, in the case of nvfortran, they can
all be replaced. We discuss limitations that may apply to more complicated
codes and future language additions that may mitigate them. The software
and Singularity/Apptainer containers are publicly provided to allow the
results to be reproduced.

Keywords: accelerated computing · OpenMP · OpenACC · do
concurrent · standard language parallelism

1 Introduction

OpenMP1 [11] and OpenACC2 [5] are popular directive-based APIs for paral-
lelizing code to run on multi-core CPUs and GPUs. For accelerated computing,

1 www.openmp.org.
2 www.openacc.org.

Supported by NSF awards AGS 202815 and ICER 1854790, and NASA grant
80NSSC20K1582. This work used the Extreme Science and Engineering Discovery Envi-
ronment (XSEDE) Bridges2 at the Pittsburgh Supercomputer Center through alloca-
tion TG-MCA03S014. It also used the DGX A100 system at the Computational Science
Research Center at San Diego State University provided by NSF award OAC 2019194.

© Springer Nature Switzerland AG 2022
S. Bhalachandra et al. (Eds.): WACCPD 2021, LNCS 13194, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-030-97759-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-97759-7_1&domain=pdf
http://orcid.org/0000-0003-0939-1055
http://orcid.org/0000-0002-2633-4290
http://orcid.org/0000-0003-1662-3328
www.openmp.org
www.openacc.org
https://doi.org/10.1007/978-3-030-97759-7_1

4 M. M. Stulajter et al.

they provide a higher-level approach to accelerating codes without requiring writ-
ing specialized low-level, often vendor-specific, API code (e.g. CUDA, ROCm,
OpenCL, etc.). Since they mostly consist of specialized comments/pragmas, they
exhibit backward compatibility, allowing a non-supported compiler to simply
ignore them and still compile the code as before. This makes directive-based
approaches very desirable for legacy codes, and helps to allow compartmental-
ized development. However, they also can suffer from incomplete vendor, hard-
ware, and/or compiler support, make codes somewhat harder to read, and, due to
their rapid development, are less future-proof than standard languages, possibly
requiring occasional re-writes.

Due to the widespread adoption of multi-core CPUs and accelerators, stan-
dard languages have begun to add built-in features that may help/enable com-
pilers to parallelize code. This includes C++17’s Standard Parallel Algorithms
and Fortran’s do concurrent (DC) (see Refs. [6,10] for examples using the
NVIDIA HPC SDK3). Standard parallel language features have the potential
to remove the need for directives, making multi-threaded and accelerated codes
fully portable across compiler vendors and hardware. However, this requires
compiler support, and few have been quick to implement these features for GPU
acceleration.

Here, we focus on Fortran’s DC construct. The NVIDIA HPC SDK is the
only compiler at the time of this writing with accelerator support using DC,
while Intel has indicated plans to add such support in an upcoming release of
their ifort compiler included in the OneAPI HPC Toolkit [13]. Other compilers
that support directive-based accelerator offloading in Fortran include GCC’s
gfortran4, LLVM flang5, AOCC’s extended flang6, IBM’s XL7, and HPE’s
Cray Fortran8, but we could not find any announced plans for these to support
DC for accelerated computing in the near future9.

In this paper, we investigate the current capabilities, portability, and per-
formance of replacing directives with DC in a Fortran mini-app that currently
implements directives for GPU-acceleration and multi-core CPU parallelism. We
replace as many directives as possible with DC, testing various run-time con-
figurations and compilers. Our mini-app currently uses OpenACC with either
nvfortran or gfortran for GPU-acceleration on NVIDIA GPUs, and uses
OpenMP with nvfortran. gfortran, or ifort for multi-core CPU parallelism
(as well as OpenACC multi-core with nvfortran). A key portability concern
is if replacing directives with DC for GPU-acceleration will result in a loss of
multi-core CPU parallelism. Therefore, we test if each compiler can parallelize

3 https://developer.nvidia.com/hpc-sdk.
4 https://gcc.gnu.org/.
5 https://flang.llvm.org.
6 https://developer.amd.com/amd-aocc.
7 https://www.ibm.com/products/xl-fortran-linux-compiler-power.
8 https://support.hpe.com/hpesc/public/docDisplay?docId=a00115296en us&

page=index.html.
9 Note that as this paper was going to press, HPE has indicated plans to support DC

on GPUs.

https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/
https://flang.llvm.org
https://developer.amd.com/amd-aocc
https://www.ibm.com/products/xl-fortran-linux-compiler-power
https://support.hpe.com/hpesc/public/docDisplay?docId=a00115296en_us&page=index.html
https://support.hpe.com/hpesc/public/docDisplay?docId=a00115296en_us&page=index.html

Can ‘do concurrent’ Replace Directives? 5

the DC loops for multi-core CPUs. We note that for codes using non-hybrid MPI
for CPU parallelism and MPI+OpenMP/ACC for GPU acceleration, this is not
as much of a concern.

The paper is organized as follows: In Sect. 2, we describe our Fortran mini-
app with its current directive-based parallelelization, along with the test case we
use, showing baseline performance results. In Sect. 3, we describe the implemen-
tation of DC into the mini-app, first introducing its capabilities and support, and
then showing examples of replacing OpenMP/ACC directives with DC, includ-
ing a discussion of current limitations. Then the resulting mini-app source code
versions and compiler flag options used for the tests are described. Performance
and compatibility results are reported in Sect. 4 for both multi-core CPU and
GPU runs. Finally, discussion on the current status of DC and its potential to
replace directives is given in Sect. 5. Instructions on how to access and use our
provided Singularity/Apptainer containers and codes to reproduce the results in
the paper are given in the Appendix.

2 Code and Test Description

To investigate the current capabilities, portability, and performance of replacing
directives with DC, we use a Fortran mini-app called diffuse that currently
implements directives for GPU-acceleration and multi-core CPU parallelism.
Here we describe the code, the test case we use, the computational test environ-
ment, and baseline performance results.

2.1 Code Description

NASA and NSF have recently supported a program called “Next Generation
Software for Data-driven Models of Space Weather with Quantified Uncertain-
ties”, whose main objective is to improve predictions of solar wind and coronal
mass ejections to investigate how they might impact Earth. This will be done by
developing a new data-driven time-dependent model of the Sun’s upper atmo-
sphere. One key component of this model is the use of a data-assimilation flux
transport model to generate an ensemble of magnetic field maps of the solar sur-
face to use as boundary conditions. To accomplish this, we have been developing
an Open-source Flux Transport (OFT) software suite, whose key computational
core is the High-Performance Flux Transport code (HipFT). HipFT currently
implements OpenACC for GPU-acceleration and OpenMP for multi-core CPU
parallelism, and we are interested in replacing the directives with DC.

In order to test the use of DC, we use a mini-app called diffuse that imple-
ments the most computationally expensive algorithm (surface diffusion) of the
flux transport in HipFT. diffuse’s source code for the diffusion algorithm is
identical to that of HipFT. The diffusion algorithm integrates a spherical sur-
face heat equation on a logically rectangular non-uniform grid. The operator is
discretized with a second-order central finite-difference scheme in space, while
the time integration uses the second-order Legendre polynomial extended sta-
bility Runge-Kutta scheme (RKL2) [3,8].

6 M. M. Stulajter et al.

2.2 Test Description

Although diffuse is used here as a mini-app representation of HipFT, it is also
used in production to slightly smooth solar surface magnetic fields to prepare
them for use in models of the corona [2]. As such, we select a real-world exam-
ple of using diffuse, that of smoothing the ‘Native res PSI map‘ described in
Ref. [4]. This large map has a resolution of 3974×2013 in (θ, φ) and takes 40,260
total iterations of applying the diffusion operator to smooth. A detail from the
map before and after running diffuse is shown in Fig. 1.

Fig. 1. Zoomed-in detail of the test case magnetic field map before (left) and after
(right) smoothing with diffuse.

2.3 Computational Environment

In order to best assess the capabilities of the compiler support for DC, we use
the latest available versions of the compilers at the time of testing. These are
shown in Table 1. The CPU tests are run on the Bridges2 system located at
the Pittsburgh Supercomputing Center using our allocation obtained through
NSF’s XSEDE program [12]. The GPU tests are run on an NVIDIA DGX A100
server at San Diego State University. Since diffuse does not have multi-node
or multi-GPU capabilities, the CPU tests are run on a single CPU node, while
the GPU tests are run on a single GPU within the DGX system. The hardware
specifications are shown in Table 2.

Table 1. Compiler versions used in tests.

Compiler Suite Compiler Version

GNU Compiler Collection gfortran 11.2

NVIDIA HPC SDK nvfortran 21.7

Intel OneAPI HPC Toolkit ifort (classic) 21.3

Since systems do not always have the latest compilers available, and setting
up our code’s dependencies can be difficult, we utilize Singularity/Apptainer
containers [7]. These containers are built with the compiler environment and
our dependent libraries pre-installed so they can be easily used to build and

Can ‘do concurrent’ Replace Directives? 7

Table 2. Hardware utilized for all test runs.

CPU GPU

CPU/GPU Model (2x) AMD EPYC 7742 NVIDIA A100

(128 cores) SXM4

Peak Memory Bandwidth 381.4 GB/s 1555 GB/s

Clock Frequency (base/boost) 2.3/3.4 GHz 1.1/1.4 GHz

RAM 256 GB 40 GB

Peak DP FLOPs 7.0 TFLOPs 9.8 TFLOPs

run the code. We use Singularity 3.8.0, and for GPU runs, use the ‘--nv’ flag
to connect to the NVIDIA driver (and CUDA library) on the local system.
The CUDA run-time library used for GPU runs was version 11.4. As shown
in the Appendix, running the codes in the containers yields virtually the same
performance as a bare metal installation. All the test runs performed in this
paper can be reproduced using the containers along with the code, both of which
are publicly released in Ref. [9] and at www.predsci.com/papers/dc.

2.4 Baseline Performance Results

Our goal in this paper is to test replacing directives with DC for accelerated
computing, ensuring we do not lose multi-core CPU parallelism, and that the
performance is comparable to the original directive-based code. It is not our
focus to compare performance between the various compilers and hardware. We
therefore use similar basic compiler optimization flags (shown in Sect.3.2) for
each compiler-hardware combination and do not explore all possible optimiza-
tions. In order to compare the performance of the original code to the modified
versions, we perform baseline timings of the original code. For these, and all tim-
ing results in the paper, we run each test 10 times and take the average of the
full wall clock times (which include all I/O and GPU-CPU data transfer time).
In Fig. 2 we show the baseline timings along with their standard deviations. We
also include CPU runs on a single CPU core (serial) to illustrate the multi-core
CPU parallelism. We see that each compiler obtains comparable performance on
the CPU runs, yielding a speedup of ∼ 7× when using 128 CPU cores compared
to running in serial. While this may seem low, it is common for highly memory-
bound algorithms to exhibit such non-ideal single node multi-threaded scaling
[1]. The performance of the nvfortran CPU run using OpenMP is ∼10% faster
than using OpenACC for multi-core parallelism. On the GPU, the nvfortran

OpenACC GPU run is ∼30% faster than the gfortran run, which is not unex-
pected considering nvfortran has a more mature implementation of OpenACC.

www.predsci.com/papers/dc

8 M. M. Stulajter et al.

Fig. 2. Baseline CPU and GPU timing results of the original diffuse code run on
the test case. Times shown are averages over 10 runs, and the standard deviations are
shown.

3 Implementation

In this section, we first give a background on Fortran’s do concurrent construct,
and then describe our implementation of it into the diffuse code, and the
resulting code variations. We also describe the compiler flags used for each code
version and compiler combination.

3.1 The Fortran do concurrent construct

In 2008, ISO Standard Fortran introduced the DC construct for loops as an
alternative to the standard do loop (or nested do loops). DC indicates to the
compiler that the loop’s iterations can be computed in any order. This potentially
allows for the expression of parallelism of loops directly in the Fortran language,
making it easier for compilers to parallelize the loops. While any-order execution
is a necessary condition for parallelization, it is not always sufficient (for example,
reduction and atomic operations, as well as others10). Therefore, DC can be
viewed as providing a hint to the compiler that the loop is likely able to be
parallelized. Work in helping make DC fully sufficient for parallelism is on-going,
with Fortran 2018 adding locality statements (allowing specification of private
and shared variables11), and specifying reductions in DC will be included in the
upcoming Fortran 202X release12.

The syntax of non-nested do loops and do concurrent loops are similar. A
do loop has the syntax do index=start,end while a do concurrent loop has
the syntax do concurrent (index=start:end). The only key difference is the
addition of the word concurrent and a small change to the loop parameters
where there is the addition of parentheses and a replacement of the comma with

10 https://releases.llvm.org/12.0.0/tools/flang/docs/DoConcurrent.html.
11 https://j3-fortran.org/doc/year/18/18-007r1.pdf.
12 https://j3-fortran.org/doc/year/21/21-007.pdf.

https://releases.llvm.org/12.0.0/tools/flang/docs/DoConcurrent.html
https://j3-fortran.org/doc/year/18/18-007r1.pdf
https://j3-fortran.org/doc/year/21/21-007.pdf

Can ‘do concurrent’ Replace Directives? 9

ellipses. With nested loops, there is more of a difference in formatting. Code
1 shows nested do loops parallelized with directives. The loop nest is shown
with both OpenMP and OpenACC directives in the manner they are used in
the mini-app. This nested do loop example spans 8 lines with directives, but
can be written in 3 lines with DC as shown in Code 2. With DC loops, nested
loops initialization statements are collapsed into one initialization statement.
The syntax of DC loops is as follows: do concurrent (index1=start1:end1,

index2=start2:end2, ...). As this example shows, DC loops make nested do

loops more compact and easier to read.

Code 1. Nested do loops with OpenMP/ACC directives

!$omp parallel do collapse(2) default(shared)
!$acc parallel loop collapse(2) default(present)

do i=1,N
do j=1,M

Computation
enddo

enddo

!$acc end parallel loop
!$omp end parallel do

Code 2. Nested do loops as a do concurrent loop

do concurrent (i=1:N, j=1:M)
Computation

enddo

Most current compilers support the Fortran 2008 standard, which includes
the basic DC syntax. However, since the specification does not require that the
compiler try to parallelize the loops, they are often treated as serial do loops.
When a compiler does support parallelization of DC, special compiler flags are
needed to activate the feature (see Sect. 3.3 for details).

Although the latest version of the OpenACC (3.1)13 specification adds sup-
port for decorating DC loops with directives, at present, there are no imple-
mentations of this support (with the possible exception of using the kernels

directive). There is also no mention of supporting directives on a DC construct
within the most recent OpenMP (5.1)14 specification. Therefore, replacing do

loops with DC may break the ability to parallelize the loops when using compil-
ers that do not support direct DC parallelization.

The current state of DC support is varied across different compilers and
versions. nvfortran 18.1 added serial support for DC along with locality of
variables, while nvfortran 20.11 added support for parallelization of DC loops

13 https://www.openacc.org/blog/announcing-openacc-31.
14 https://www.openmp.org/spec-html/5.1/openmp.html.

https://www.openacc.org/blog/announcing-openacc-31
https://www.openmp.org/spec-html/5.1/openmp.html

10 M. M. Stulajter et al.

for both CPUs and GPUs. In gfortran 8, serial support for DC was introduced,
while gfortran 9 added support for parallelization of DC on multi-core CPUs
using gfortran’s auto parallelization feature. ifort started supporting serial
DC loops in version 12. Then, in version 16, parallelization support was added
through ifort’s auto parallelization feature (using the flag -parallel). With
version 19.1, locality of variable support was added, and parallelization became
linked to the OpenMP compiler flags. Table 3 gives a summary of the current
support of parallel DC loops for the compilers used in this paper.

Table 3. Current support of DC loop parallelization for the compilers used in this
paper.

Compiler Version do concurrent parallelization support

gfortran ≥9 Parallelizable on CPU with
-ftree-parallelize-loops=<N>

flag. Locality of variables is not supported.

nvfortran ≥20.11 Parallelizable on CPU and GPU with the -stdpar

flag. Locality of variables is supported.

ifort ≥19.1 Parallelizable on CPU with the -fopenmp flag.
Locality of variables is supported

3.2 Code Versions

Here we list the code variants that we use to test the portability and performance
of replacing directives with DC in diffuse. For versions that use DC, only basic
DC loop syntax was used with no locality of variables, as not all compilers
support this feature in all configurations.

Original : This is the original version of diffuse which uses OpenACC and
OpenMP directives on all parallelizable do loops as well as OpenACC data move-
ment directives. It does not contain any DC loops. It is the code version used
for the performance results of Sect. 2.4, and will be the standard we compare to
for both performance and compatibility.

New : This version is obtained by replacing directive surrounded do loops in
Original with DC loops, with the exception of reduction loops. The directives on
the reduction loops are kept since reductions are not supported in parallelized
DC loops (see discussion in Experimental). We also keep all OpenACC data
directives for explicit GPU data management. This code is expected to perform
as well as the Original code if the DC loops are recognized and implemented
efficiently.

Serial : This version contains no OpenACC or OpenMP directives at all, nor any
DC loops. It is the same as Original with all directives removed. It should run
in serial in all cases, unless an auto-parallelizing feature of a compiler is utilized.

Can ‘do concurrent’ Replace Directives? 11

We include this code as a control and to ensure the multi-core CPU parallel runs
are exhibiting the expected parallelism.

Experimental : This version does not contain any OpenMP or OpenACC direc-
tives at all, replacing all loops (including reduction loops) with DC. A key fea-
ture of this code version is that it represents the ‘ideal’ scenario of using only the
Fortran standard language for accelerated computing without needing any direc-
tives. This version does not technically violate the Fortran standard since a DC
on a reduction loop is valid if not parallelized, as the iterations can be computed
in any order. However, if the compiler does parallelize these DC reduction loops,
it will likely produce wrong results due to race conditions, unless it supports
implicit analysis and implementation of DC reductions. As mentioned above,
Fortran 202X will add reductions to DC, resolving this problem. Removing all
directives also removes explicit GPU-CPU data movement, whose absence will
lead to very poor performance on accelerators (due to repeated data movement
between the CPU and GPU) unless the compiler supports automatic GPU-CPU
memory management. Features such as NVIDIA’s Unified Memory and AMD’s
Smart Access Memory can allow compilers to resolve this issue.

In Table 4 we summarize all versions of the code we use for our tests.

Table 4. Summary of DC and directive implementations for each version of the
diffuse code tested.

do concurrent Directives

Original None all loops & data management

New all loops except reductions reduction loops & data management

Serial None None

Experimental all loops None

3.3 Compiler Flag Options

The gfortran, nvfortran, and ifort compilers each have different flags to
implement code parallelization and optimizations. Here we describe the compiler
flags we use for each code version, compiler, and target hardware configuration.
For all compilers, we use the -O3 flag to activate typical compiler optimiza-
tions, and -march=<ARCH> to tell the compiler to target the specific CPU we run
the tests on. Typically, we use native for <ARCH> to automatically target the
current system, but some configurations (such as using ifort on AMD EPYC
CPUs) required us to specify the option manually (in that case <ARCH> is set to
core-avx2). All Serial code versions use only these default compiler flags.

nvfortran: For GPU parallelization, the Original code uses the flag
-acc=gpu which enables the OpenACC directives. We also include the flag
-gpu=ccXY, cudaX.Y to specify the specific GPU run time and hardware capa-
bilities (similar to -march for CPUs). The ccXY indicates a device with compute
capabilities of X.Y, while cudaX.Y tells the compiler to use the X.Y version of

12 M. M. Stulajter et al.

the CUDA library. To check if/how the compiler parallelized the loops, we set
-Minfo=accel, which outputs parallelization information.

For the New code (containing DC loops), we add two new flags. The first
is -stdpar=gpu, which enables DC loops to be parallelized and offloaded to the
GPU15. The other is -Minfo=stdpar which outputs the compiler’s parallelization
messages (similar to -Minfo=accel). When using -stdpar=gpu, unified managed
memory is automatically enabled, making all allocatable arrays unified arrays.
This means the runtime is responsible for correct and efficient CPU-GPU data
transfers during the run, and any OpenACC data movement directives on such
arrays are essentially no-ops. Static arrays are not made into unified arrays, so
manual GPU data movement is still needed for good performance (note that
diffuse does not make use of any static arrays). If one wants to continue to
manage the GPU data manually (using OpenACC or OpenMP data movement
directives), the option -gpu=nomanaged can be used.

For the Experimental code, since there are no directives, we simply use the
standard parallelism option of -stdpar=gpu -gpu=ccXY,cudaX.Y, and rely on
the compiler to automatically detect the reductions and implement them cor-
rectly, as well as manage the GPU memory using unified memory.

For CPU parallelization, the Original code has two implementations. One is
to use OpenMP with the -mp flag, and the other is to use OpenACC with the
-acc=multicore flag. Even though the OpenMP compilation produces slightly
better performance (as was shown in Sect. 2.4), we only use the OpenACC multi-
core option. This is because nvfortran currently activates OpenACC when using
-stdpar, so we cannot use both -stdpar for DC and OpenMP (as would be
needed in the New code) since OpenMP and OpenACC are not written to
work together (and in the New code case, causes a compiler error). We note
that when using OpenACC for multi-core CPU, the number of threads is con-
trolled through the runtime variable ACC NUM CORES=<N>, rather than OpenMP’s
OMP NUM THREADS=<N>.

For the Experimental code, since there are no directives, we simply use the
standard parallelism option of -stdpar=multicore, relying on the compiler to
automatically detect the reductions and implement them correctly.

gfortran: For GPU parallelization, the Original code uses the flag
-fopenacc, which enables OpenACC directives. In addition to this flag,
the intended offload GPU must be specified. For NVIDIA GPUs, the flag
-foffload=nvptx-none is used (targeting specific compute capabilities is not
currently implemented). We also use the flag -fopenacc-dim=<DIM> to specify
the parallel topology for the offload kernels. <DIM> is set to three colon-separated
values that map to ‘gang’, ‘worker’ and, ‘vector’ sizes. Since OpenACC supports
acceleration for multiple GPU vendors, the default values for the topology may
not be optimal. Although this level of optimization is outside the scope of this
paper, we observed that the nvfortran compiler was using a vector length of

15 For nvfortran 21.7, it appears that setting the -stdpar=gpu flag implicitly sets the
-acc=gpu option as well. This is an important consideration if one has OpenACC
directives that should be ignored when using -stdpar.

Can ‘do concurrent’ Replace Directives? 13

128 when compiling most OpenACC loops, so as a simple optimization, we use
-fopenacc-dim=::128 for our tests. The New code is not supported on the GPU
with gfortran at this time. This is because there is no current support for DC
GPU offloading.

On the CPU, the Original code uses -fopenmp, which as above, activates
OpenMP directives for multi-core CPU parallelism. gfortran does not sup-
port direct parallelism on DC loops. Therefore, for the New code, we must
use gfortran’s auto parallelization feature using the -ftree-parallelize-

loops=<N> flag, where <N> is the number of threads to run on. This auto paral-
lelization analyzes both do and DC loops and determines if they can be parallelized
and if so, implements the parallelism. Therefore, it can be used in the case of the
New code, as well as the Experimental code. Since the compiler is auto-analyzing
the loops, it may detect the DC reduction loops and parallelize them correctly.

ifort: Since ifort does not currently support GPU-offloading with DC or
OpenACC, we only test it with CPU parallelism to ensure switching from direc-
tives to DC does not lose our CPU parallel capabilities when using ifort. For all
code versions, we add the flags -fp-model precise and -heap-arrays as those
are standard flags we use for runs of diffuse to ensure robustness and precision,
but they are not related to parallelization. For the Original code, we use the flag
-fopenmp in order to enable OpenMP directives to produce parallel code for mul-
ticore CPUs. For the New code, we use the same -fopenmp flag as the Original
code, as it is also used to enable automatic parallelization of DC loops. The Exper-
imental code also uses the same -fopenmp flag. However, as the documentation
states that DC reduction loops are not supported, we do not expect ifort to par-
allelize them, and rather run them in serial (although as will be shown, the current
compiler version parallelizes the loops anyways, resulting in incorrect results).

4 Results

Here we show timing results for all chosen compilers, code versions, and hardware
(where supported). Key questions we address are: 1) do the compilers that sup-
port GPU-acceleration with directives also support it using DC? 2) does replacing
directives with DC lose CPU multicore parallelism? (i.e. do the compilers support
DC for CPU multicore?) 3) for compiler-hardware combinations that support par-
allelizing DC, how does the performance compare to the baseline directive-based
code? We first report results for the New code compared to the Original code for
each compiler and hardware type, and afterwards discuss results for the Experi-
mental code.

For each configuration, we run the test case of Sect. 2.2, and use the Linux
program time to record three times: real, user, and system. The real time is the
wall clock time the code took to run. The user time is the sum of all thread times, or
how much total CPU computation time was spent. Using multiple threads should
result in a lower real time, but a (much) higher user time. The system time is the
operating system overhead, which can include CPU-GPU data transfer, as well as
other overheads. All reported timings are averaged over 10 runs.

14 M. M. Stulajter et al.

4.1 Results Using nvfortran

The results for the Original and New code run on the GPU with nvfortran are
shown in Table 5. The time difference between the Original code and the New code
is less than 2%, and the standard deviation over the 10 runs is around ±0.1s for
both. The slight increase in run time for the New code is possibly due to its use
of unified memory, which can be less efficient than manually managing the GPU-
CPU memory as is done through OpenACC data directives in the Original code.
This result does not achieve a full replacement of directives with DC since not all
directives were replaced in the New code. However, the vast majority of them were,
with only a few remaining directives on the reduction loops, showing great progress
in replacing directives.

Table 5. GPU timing results with nvfortran. Both runs used the additional compiler
flag -gpu=cc80,cuda11.4

Code Compiler flags real (s) user (s) system (s)

Original -acc=gpu 35.07 34.46 0.59

New -acc=gpu -stdpar=gpu 35.67 35.01 0.54

To ensure that we did not loose CPU multicore parallelism, we show the CPU
results in Table 6. We see that, like in the GPU case, replacing directives with DC
yields similar runtimes to the original code. Here, the New code with DC runs
around 3% faster than the Original code, but both are within the standard devi-
ation (±15s) of the 10 runs. Therefore, there is no loss of CPU portability when
using DC with nvfortran for our mini-app.

Table 6. CPU timing results with nvfortran

Code Compiler flags real (s) user (s) system (s)

Serial 1284.59 1272.45 0.22

Original -acc=multicore 224.18 26214.96 1965.06

New -acc=multicore 219.57 25638.37 1889.20

-stdpar=multicore

4.2 Results Using gfortran

The result for theOriginal code run on theGPUwithgfortran is shown inTable 5.
Unlike nvfortran, gfortran does not support GPU-acceleration using DC, nor

Can ‘do concurrent’ Replace Directives? 15

Table 7. GPU timing results with gfortran.

Code Compiler flags real (s) user (s) system (s)

Original -fopenacc

-foffload=nvptx-none

49.52 48.90 0.54

-fopenacc-dim=::128

New No Support - - -

is there auto parallelization support for GPU offloading. Therefore, replacing the
directives with DC currently breaks support for GPU-acceleration with gfortran.
For NVIDIA GPUs, this is not a prohibitive limitation since the nvfortran com-
piler is freely available. However, for other accelerators (namely AMD GPUs), this
loss of support may rule out using DC at this time.

Unlike for GPU-acceleration, CPU multi-core parallelism with gfortran is not
lost with DC, even though there is no direct support for DC parallelization. In
Table 8, we show the CPU timing results of the Original and New codes. We see
that the performance difference between the codes is ∼10%, within the standard
deviations of the 10 runs (±13s for the Original and ±18s for the New code). The
New code is also able to be parallelized because gfortran treats DC loops as regu-
lar do loops, which are parallelized using the auto parallelization feature. However,
the loops in diffuse are fairly simple. In other codes, the auto parallelization may
not be able to handle more complex loops, that could otherwise be parallelized
using directives. Therefore, the result here should be viewed with caution. Note
also that the auto parallelization feature works the same on our code with regular
do loops as it does with DC loops (i.e. it would even parallelize the Serial code
version).

Table 8. CPU timing results with gfortran

Code Compiler flags real (s) user (s) system (s)

Serial 1308.75 1296.74 0.16

Original -fopenmp 191.90 24117.72 8.02

New -fopenmp 212.64 26588.59 8.65

-ftree-parallelize-loops=128

The thread control for the New code is unique. Since the OpenMP directives
are still on the reduction loops, while the remaining loops use DC with no direc-
tives, the number of CPU threads used for the reductions is set by the standard
OMP NUM THREADS environment variable, while that used by the DC loops is con-
trolled by the compiler flag value -ftree-parallelize-loops=<N>. This compli-
cates the thread control, and also removes run-time thread control.

16 M. M. Stulajter et al.

4.3 Results Using ifort

As mentioned in the introduction, the Intel OpenAPI Toolkit does not currently
support GPU-acceleration using DC loops, but there are plans for support in the
future. Therefore, here we focus on DC compatibility with multi-core CPU paral-
lelism. In Table 9, we show the timing results for the Original and New codes. We
see that replacing directives with DC still allows for multi-core CPU parallelism,
and surprisingly exhibits a nearly 10% improvement in performance. The standard
deviation of the 10 runs was roughly ±8s, so this performance increase is signif-
icant. It may be attributed to more efficient optimizations being available to the
compiler when using DC compared to OpenMP directives.

Table 9. CPU timing results with ifort.

Code Compiler flags real (s) user (s) system (s)

Serial 1318.60 1306.27 0.18

Original -fopenmp 194.86 24213.11 320.53

New -fopenmp 178.29 21888.21 280.65

Since the implementation of DC parallelism is connected to OpenMP (as indi-
cated by the use of the -fopenmp flag), the number of threads remains controlled
by the standard environment variable OMP NUM THREADS (or optionally at compile
time with -par-num-threads=<N> which overrides OMP NUM THREADS).

4.4 Experimental Results

As mentioned in Sect. 3.2, the current Fortran standard does not have a way to
indicate to the compiler that a DC loop requires reduction or atomic operations.
However some compilers have implemented code analysis methods to automati-
cally detect and implement such operations. Therefore, the Experimental code,
which represents the ideal scenario of replacing all directives with DC loops, may
work with some compilers.

Using nvfortran, we found that the code parallelized and ran correctly on both
the GPU and CPU. It appears nvfortran detects the reductions and implements
them correctly for our code. The run times are shown in Table 10. They are nearly

Table 10. GPU and CPU timing results for the Experimental code with nvfortran.

Code CPU/GPU Compiler flag real (s) user (s) system (s)

Experimental GPU -stdpar=gpu 35.63 35.01 0.53

-gpu=cc80,cuda11.4

Experimental CPU -stdpar=multicore 219.21 25654.35 1906.40

Can ‘do concurrent’ Replace Directives? 17

identical to those of the New code shown in Tables 5 and 6 which is expected since
only a few small loops used directives for reductions in the New code. This means
that for diffuse, we can use DC to fully eliminate all directives and not lose any
CPU or GPU performance with nvfortran. We reiterate that more complicated
codes may not yet work with zero directives for a variety of reasons including not
detecting complicated reduction or atomic operations, not being compatible with
in-lined function calls, and, for GPU-acceleration, not supporting automatic mem-
ory management with static arrays.

For gfortran, we only test the code on the CPU since there is no support for
DC GPU-offloading. In this case, the Experimental code ran correctly, implying
the auto-parallelization done by the compiler was able to detect the reductions
and parallelize them. The run time is shown in Table 11 and is roughly 10% slower
comparable to the run time of the New code in Table 8. However, the times are
nearly within the standard deviation of the 10 runs (±18s).

Table 11. CPU timing results for the Experimental code with gfortran.

Code Compiler flags real (s) user (s) system (s)

Experimental -ftree-parallelize-loops=128 236.28 29565.01 10.08

Using ifort, the Experimental code compiled and ran, but did not give the
correct results. This is because ifort does not support implicit reductions of DC
loops, yet parallelized the loop anyways when we used the -fopenmp flag, There-
fore, the resulting inherent race conditions produced incorrect results.

5 Discussion

In this paper, we have used a mini-app code to explore the current status of replac-
ing do loops using directives with do concurrent (DC) loops for accelerated com-
puting. The original code used OpenACC for GPU-acceleration when compiled
with gfortran or nvfortran, and OpenMP for multi-core CPU parallelism when
compiled with gfortran, nvfortran, or ifort. We modified the code to replace
the directives with DC and used a test case to explore the resulting compati-
bility, portability, and performance, all with the newest available versions of the
compilers.

Compatibility: We found that only nvfortran currently supports GPU acceler-
ation with DC, and therefore replacing the directives removed GPU support when
using gfortran. Since nvfortran is freely available, this is not an insurmountable
problem when running on NVIDIA GPUs. However, gfortran also has AMD (and
possible future Intel) GPU support, making this an important consideration. The
ifort compiler does not currently support GPU-acceleration with DC, but as Intel
has indicated plans to add this support soon, switching from OpenACC directives

18 M. M. Stulajter et al.

to DC may increase compatibility (as ifort only supports OpenMP GPU offload,
not OpenACC).

We also found that the current Fortran specification for DC lacks features that
are needed to guarantee correct parallelization of all of our mini-app’s paralleliz-
able loops (specifically, loops with reductions). Indeed, when ifort attempted to
parallelize our reduction loops for the CPU, it resulted in incorrect results. In con-
trast, the nvfortran compiler has implicit reduction detection of DC loops, allow-
ing us to replace all directives with DC. The next release of the Fortran standard
(202x) will include an explicit ‘reduce’ clause on DC, which, when implemented,
should alleviate this issue.

Another compatibility concern is that we currently use OpenACC directives
to manually control GPU-CPU memory management, and removing these could
cause extreme loss of performance. In the case of nvfortran, since it automati-
cally activates its unified memory management feature when compiling with DC
GPU-acceleration, this issue is avoided.However, unifiedmemory is limited to allo-
catable arrays, so static arrays may still require data management directives.

Using cutting-edge language and compiler features have a risk of breaking back-
ward compatibility with older compilers. In this paper we used the most recent ver-
sions of the compilers we could for the best support, but on some systems this is not
always available. Container frameworks like Singularity/Apptainer (as used here)
can help mitigate this issue, however the frameworks are also not always available
on all systems, and can sometimes be complicated to use for large scale simulations.

Portability:A key consideration in replacing directives with DC for GPU acceler-
ation was to see if, by doing so, we still maintain CPU multi-core parallelism (that
we originally used OpenMP directives to achieve). We found that nvfortran and
ifort compilers directly support DC for multi-core CPU parallelism, while ifort
requires directives on loops with reductions for correctness. With gfortran, while
there is no direct support for DC parallelism, the loops can still be parallelized
using gfortran’s auto parallelization feature. With this feature, even reduction
DC loops are correctly recognized and parallelized. Thus, all three compilers we
use are able to keep multi-core CPU parallelism when replacing directives with
DC (with ifort still requiring some on reduction loops).

Performance: Replacing directives with DC allows much cleaner looking code
and robustness due to being part of the standard language. However, this is only
worth while if it also results in acceptable performance. Through our timings, we
found that in both the GPU and CPU cases, the performance of the code after
replacing directives with DC was comparable to that of the original directive-
based code, with some configurations improving performance slightly, and in oth-
ers, decreasing slightly. For GPU runs with DC, nvfortran’s unified memory was
used, and the resulting performance was comparable to using manual OpenACC
data directives. However, more complicated codes may not be as compatible with
unified memory and/or may lose some performance using it.

Summary: With nvfortran, we were able to remove and replace all directives
in our code with DC, and achieve efficient CPU and GPU parallelism. However,

Can ‘do concurrent’ Replace Directives? 19

this relied on specific features of nvfortran including implicitly detecting reduc-
tions and the use of unified managed memory. In order to maintain cross compiler
compatibility, we can continue to use OpenACC/OpenMP directives for reduc-
tions and data movement until equivalent standard language features are written
and widely supported. Even with the remaining directives, using DC has a large
benefit, as the number of directives is decreased dramatically.

Can Fortran’s do concurrent replace directives for accelerated computing?
With nvfortran and NVIDIA GPUs, for some codes (such as ours) the answer is
yes, and with no (or minimal) loss of performance. With upcoming language fea-
tures and compiler implementations, more complicated codes may also eventually
be parallelized without directives, and do so with support across multiple compiler
and hardware vendors.

Appendix

Singularity/Apptainer containers: In order to test the latest compilers and to
simplify setup of our library dependencies, we utilized Singularity/Apptainer con-
tainers. These containers allow one to run software in a containerized environment
on any compatible system using only the container file.

Container setup: The containers were straight forward to setup and use for our
timings. Two methods were used to create them. For nvfortran and ifort, a
docker image of NVIDIA HPC SDK or Intel OneAPI HPC Toolkit was used to
create a sandbox. For gfortran, a similar sandbox with Ubuntu 21.04 was created
and then gfortranwas installed with the apt-get command. Once the sandboxes
were created, the dependent libraries were installed. A sandbox is treated like a vir-
tual machine, allowing us to edit and install new software into the container (note
this requires sudoprivileges).Once all the needed software is installed, the sandbox
is converted to a .sif file which can be copied and run (without sudo privileges)
on any other compatible machine with Singularity/Apptainer installed, but it can
no longer be edited. However, the container is able to modify files outside itself,
allowing us to compile and run the test cases. For GPU-accelerated runs, a spe-
cial flag is needed when running the container depending on the vendor of GPU.
For NVIDIA GPUs, the flag is --nv, while for AMD GPUs, the flag is --rocm. For
more details on Singularity/Apptainer containers, see Ref. [7].

Container performance tests: Using containers can sometimes cause perfor-
mance overhead. To ensure that using the Singularity/Apptainer containers does
not cause significant overhead in our case, we ran two test cases on both a bare
metal setup and with a container with the same compiler version (in this case
gfortran 10.2). Table 12 shows timings of the test run using both the Original
and Serial codes described in Sect. 3.2. We see that the runs using the container
perform nearly identical to those run on bare metal, allowing us to confidently use
the containers for the runs in the paper.

20 M. M. Stulajter et al.

Table 12. Timing results on a Bridges2 CPU compute node using gfortran 10.2 bare
metal and form within a Singularity Container

Code Run method real (s) user (s) system (s)

Serial Bare Metal 1306.10 1294.30 0.154

Singularity 1300.43 1287.50 0.168

Original Bare Metal 164.87 20782.32 5.935

Singularity 165.27 20777.85 7.248

Reproducibility package: The results in this paper can be reproduced using our
reproducibility package hosted publicly at Ref. [9] and on our website16. The pack-
age contains three Singularity/Apptainer containers (for gfortran, nvfortran,
and ifort), as well as all code versions, compiler options, and test cases. The pack-
age requires minimal customization (only specifying hardware-specific compiler
options) of the main script, which can then be used to automatically run either
all, or a subset, of runs from the paper. See the documentation in the package for
more details. A reference solution is also provided for validation. Note that runs
using GPU-acceleration require having an NVIDIA GPU with compatible drivers
installed on the system.

6 Artifact Availability Statement

Summary of the Experiments Reported

Timings were performed on the various mini-app versions on the CPU and GPU
using singularity containers. These versions represented different levels of replac-
ing OpenACC and OpenMP directives with do concurrent loops. Each version was
tested with the compilers gfortran, nvfortran, and ifort. The compilers were loaded
in a singularity container, and the codes were executed through these singularity
containers. For each code and compiler version, 10 runs were carried out in order
to get an average run time and standard deviation.

Artifact Availability

Software Artifact Availability: All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hardware artifacts.

Data Artifact Availability: All author-created data artifacts are maintained in a
public repository under an OSI-approved license.

16 www.predsci.com/papers/dc.

www.predsci.com/papers/dc

Can ‘do concurrent’ Replace Directives? 21

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

10.5281/zenodo.5253520

http://www.predsci.com/papers/dc

References

1. Balarac, G., et al.: AVBP and YALES2 portability, tuning and scalability on AMD
EPYC 7002 Rome processors (2020)

2. Caplan, R.M., Downs, C., Linker, J.: Preparing photospheric magnetic field mea-
surements for use in coronal and heliospheric models. In: AGU Fall Meeting
Abstracts, vol. 2019, pp. SH43E–3389 December (2019)

3. Caplan, R.M., Mikić, Z., Linker, J.A., Lionello, R.: Advancing parabolic operators in
thermodynamic MHD models: explicit super time-stepping versus implicit schemes
with krylov solvers. J. Phys. Conf. Series 837, 012016 (2017). https://doi.org/10.
1088/1742-6596/837/1/012016

4. Caplan, R.M., Downs, C., Linker, J.A., Mikic, Z.: Variations in finite-difference
potential fields. Astrophys. J. 915(1), 44 (2021). https://doi.org/10.3847/1538-
4357/abfd2f

5. Chandrasekaran, S., Juckeland, G.: OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional (2017)

6. David Olsen, Graham Lopez, B.A.L.: Accelerating standard C++ with GPUs
using stdpar (2021).https://developer.nvidia.com/blog/accelerating-standard-c-
with-gpus-using-stdpar/

7. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for
mobility of compute. PLOS ONE 12(5), e0177459 (2017). https://doi.org/10.1371/
journal.pone.0177459

8. Meyer, C.D., Balsara, D.S., Aslam, T.D.: A stabilized Runge-Kutta-Legendre
method for explicit super-time-stepping of parabolic and mixed equations. J. Com-
put. Phys. 257, 594–626 (2014). https://doi.org/10.1016/j.jcp.2013.08.021

9. Mikic, Z., Caplan, R.M., Linker, J.A., Stulajter, M.: Reproducibility package for run-
ning the DIFFUSE test cases from “Can Fortran’s ‘do concurrent’ replace directives
for accelerated computing” (2021). https://doi.org/10.5281/zenodo.5253520

10. Ozen, G., Lopez, G.: Accelerating Fortran do concurrent with GPUs and
the NVIDIA HPC SDK (2020). https://developer.nvidia.com/blog/accelerating-
standard-c-with-gpus-using-stdpar/

11. Van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP The Next Step: Affinity.
Tasking, and SIMD. MIT press, Accelerators (2017)

12. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazle-
wood, V., Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J.R., Wilkins-
Diehr, N.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5), 62–74
(2014). https://doi.org/10.1109/mcse.2014.80

13. Xinman Tian, Kari Qi, M.L.: Practical examples of OpenMP offload to GPUs
(2021).https://techdecoded.intel.io/essentials/3-quick-practical-examples-of-
openmp-offload-to-gpus/

https://doi.org/10.1088/1742-6596/837/1/012016
https://doi.org/10.1088/1742-6596/837/1/012016
https://doi.org/10.3847/1538-4357/abfd2f
https://doi.org/10.3847/1538-4357/abfd2f
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1016/j.jcp.2013.08.021
https://doi.org/10.5281/zenodo.5253520
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://developer.nvidia.com/blog/accelerating-standard-c-with-gpus-using-stdpar/
https://doi.org/10.1109/mcse.2014.80
https://techdecoded.intel.io/essentials/3-quick-practical-examples-of-openmp-offload-to-gpus/
https://techdecoded.intel.io/essentials/3-quick-practical-examples-of-openmp-offload-to-gpus/

